Skip to main content
Top

Open Access 18-05-2024 | Metastasis | Review

Targeting CD44 and other pleiotropic co-receptors as a means for broad inhibition of tumor growth and metastasis

Authors: Lisa-Marie Mehner, Leonel Munoz-Sagredo, Steffen Joachim Sonnentag, Sven Máté Treffert, Véronique Orian-Rousseau

Published in: Clinical & Experimental Metastasis

Login to get access

Abstract

Although progress has been made in the treatment of cancer, particularly for the four major types of cancers affecting the lungs, colon, breast and prostate, resistance to cancer treatment often emerges upon inhibition of major signaling pathways, which leads to the activation of additional pathways as a last-resort survival mechanism by the cancer cells. This signaling plasticity provides cancer cells with a level of operational freedom, reducing treatment efficacy. Plasticity is a characteristic of cancer cells that are not only able to switch signaling pathways but also from one cellular state (differentiated cells to stem cells or vice versa) to another. It seems implausible that the inhibition of one or a few signaling pathways of heterogeneous and plastic tumors can sustain a durable effect. We propose that inhibiting molecules with pleiotropic functions such as cell surface co-receptors can be a key to preventing therapy escape instead of targeting bona fide receptors. Therefore, we ask the question whether co-receptors often considered as “accessory molecules” are an overlooked key to control cancer cell behavior.
Literature
1.
go back to reference Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 6:201PubMedPubMedCentralCrossRef Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 6:201PubMedPubMedCentralCrossRef
2.
go back to reference Zahavi D, Weiner L (2020) Monoclonal Antibodies in Cancer Therapy, Antibodies (Basel) 9 Zahavi D, Weiner L (2020) Monoclonal Antibodies in Cancer Therapy, Antibodies (Basel) 9
3.
go back to reference Bedard PL, Hyman DM, Davids MS, Siu LL (2020) Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395:1078–1088PubMedCrossRef Bedard PL, Hyman DM, Davids MS, Siu LL (2020) Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395:1078–1088PubMedCrossRef
5.
6.
go back to reference Johnson GL, Stuhlmiller TJ, Angus SP, Zawistowski JS, Graves LM (2014) Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin Cancer Res 20:2516–2522PubMedPubMedCentralCrossRef Johnson GL, Stuhlmiller TJ, Angus SP, Zawistowski JS, Graves LM (2014) Molecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clin Cancer Res 20:2516–2522PubMedPubMedCentralCrossRef
7.
go back to reference Laruson AJ, Yeaman S, Lotterhos KE (2020) The importance of genetic redundancy in evolution. Trends Ecol Evol 35:809–822PubMedCrossRef Laruson AJ, Yeaman S, Lotterhos KE (2020) The importance of genetic redundancy in evolution. Trends Ecol Evol 35:809–822PubMedCrossRef
8.
go back to reference Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188PubMedCrossRef Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188PubMedCrossRef
9.
go back to reference Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171PubMedCrossRef Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171PubMedCrossRef
11.
go back to reference Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937PubMedPubMedCentralCrossRef Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937PubMedPubMedCentralCrossRef
12.
go back to reference Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043PubMedCrossRef Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043PubMedCrossRef
13.
go back to reference Raghav K, Morris V, Tang C, Morelli P, Amin HM, Chen K, Manyam GC, Broom B, Overman MJ, Shaw K, Meric-Bernstam F, Maru D, Menter D, Ellis LM, Eng C, Hong D, Kopetz S (2016) MET amplification in metastatic colorectal cancer: an acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget 7:54627–54631PubMedPubMedCentralCrossRef Raghav K, Morris V, Tang C, Morelli P, Amin HM, Chen K, Manyam GC, Broom B, Overman MJ, Shaw K, Meric-Bernstam F, Maru D, Menter D, Ellis LM, Eng C, Hong D, Kopetz S (2016) MET amplification in metastatic colorectal cancer: an acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget 7:54627–54631PubMedPubMedCentralCrossRef
14.
go back to reference Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J (2021) Targeted Therapies in Cancer: To Be or Not to Be, Selective, Biomedicines 9 Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J (2021) Targeted Therapies in Cancer: To Be or Not to Be, Selective, Biomedicines 9
15.
go back to reference Bahar ME, Kim HJ, Kim DR (2023) Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 8:455PubMedPubMedCentralCrossRef Bahar ME, Kim HJ, Kim DR (2023) Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 8:455PubMedPubMedCentralCrossRef
17.
go back to reference Alix-Panabieres C, Pantel K (2021) Liquid Biopsy: from Discovery to Clinical Application. Cancer Discov 11:858–873PubMedCrossRef Alix-Panabieres C, Pantel K (2021) Liquid Biopsy: from Discovery to Clinical Application. Cancer Discov 11:858–873PubMedCrossRef
18.
go back to reference Liu S, Nikanjam M, Kurzrock R (2016) Dosing de novo combinations of two targeted drugs: towards a customized precision medicine approach to advanced cancers. Oncotarget 7:11310–11320PubMedPubMedCentralCrossRef Liu S, Nikanjam M, Kurzrock R (2016) Dosing de novo combinations of two targeted drugs: towards a customized precision medicine approach to advanced cancers. Oncotarget 7:11310–11320PubMedPubMedCentralCrossRef
19.
go back to reference Nikanjam M, Tinajero J, McGann M, Li J, Yang J, Shen F, Sicklick JK, Kato S, Capparelli E, Kurzrock R (2023) Dosing of 3 targeted agents in Novel Drug combinations used at the Precision Medicine Clinic of the University of California San Diego. J Hematol Oncol Pharm 13:19–25PubMedPubMedCentral Nikanjam M, Tinajero J, McGann M, Li J, Yang J, Shen F, Sicklick JK, Kato S, Capparelli E, Kurzrock R (2023) Dosing of 3 targeted agents in Novel Drug combinations used at the Precision Medicine Clinic of the University of California San Diego. J Hematol Oncol Pharm 13:19–25PubMedPubMedCentral
20.
go back to reference Lopez JS, Banerji U (2017) Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol 14:57–66PubMedCrossRef Lopez JS, Banerji U (2017) Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol 14:57–66PubMedCrossRef
21.
22.
go back to reference Colombo C, De Leo S, Trevisan M, Giancola N, Scaltrito A, Fugazzola L (2022) Daily Management of patients on multikinase inhibitors’ treatment. Front Oncol 12:903532PubMedPubMedCentralCrossRef Colombo C, De Leo S, Trevisan M, Giancola N, Scaltrito A, Fugazzola L (2022) Daily Management of patients on multikinase inhibitors’ treatment. Front Oncol 12:903532PubMedPubMedCentralCrossRef
23.
go back to reference Orian-Rousseau V, Sleeman J (2014) CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res 123:231–254PubMedCrossRef Orian-Rousseau V, Sleeman J (2014) CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res 123:231–254PubMedCrossRef
24.
go back to reference Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H (2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16:3074–3086PubMedPubMedCentralCrossRef Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H (2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16:3074–3086PubMedPubMedCentralCrossRef
25.
go back to reference Matzke-Ogi A, Jannasch K, Shatirishvili M, Fuchs B, Chiblak S, Morton J, Tawk B, Lindner T, Sansom O, Alves F, Warth A, Schwager C, Mier W, Kleeff J, Ponta H, Abdollahi A, Orian-Rousseau V (2016) Inhibition of Tumor Growth and Metastasis in Pancreatic Cancer models by Interference with CD44v6 Signaling. Gastroenterology 150, 513 – 25 e10. Matzke-Ogi A, Jannasch K, Shatirishvili M, Fuchs B, Chiblak S, Morton J, Tawk B, Lindner T, Sansom O, Alves F, Warth A, Schwager C, Mier W, Kleeff J, Ponta H, Abdollahi A, Orian-Rousseau V (2016) Inhibition of Tumor Growth and Metastasis in Pancreatic Cancer models by Interference with CD44v6 Signaling. Gastroenterology 150, 513 – 25 e10.
26.
go back to reference Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V (2015) CD44 functions in wnt signaling by regulating LRP6 localization and activation. Cell Death Differ 22:677–689PubMedCrossRef Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V (2015) CD44 functions in wnt signaling by regulating LRP6 localization and activation. Cell Death Differ 22:677–689PubMedCrossRef
27.
go back to reference Walter RJ, Sonnentag SJ, Munoz-Sagredo L, Merkel M, Richert L, Bunert F, Heneka YM, Loustau T, Hodder M, Ridgway RA, Sansom OJ, Mely Y, Rothbauer U, Schmitt M, Orian-Rousseau V (2022) Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death Dis 13:168PubMedPubMedCentralCrossRef Walter RJ, Sonnentag SJ, Munoz-Sagredo L, Merkel M, Richert L, Bunert F, Heneka YM, Loustau T, Hodder M, Ridgway RA, Sansom OJ, Mely Y, Rothbauer U, Schmitt M, Orian-Rousseau V (2022) Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death Dis 13:168PubMedPubMedCentralCrossRef
28.
go back to reference Yu X, Munoz-Sagredo L, Streule K, Muschong P, Bayer E, Walter RJ, Gutjahr JC, Greil R, Concha ML, Muller-Tidow C, Hartmann TN, Orian-Rousseau V (2021) CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood 138:1067–1080PubMedCrossRef Yu X, Munoz-Sagredo L, Streule K, Muschong P, Bayer E, Walter RJ, Gutjahr JC, Greil R, Concha ML, Muller-Tidow C, Hartmann TN, Orian-Rousseau V (2021) CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood 138:1067–1080PubMedCrossRef
29.
30.
go back to reference Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR (2021) Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 11:200377PubMedPubMedCentralCrossRef Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR (2021) Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 11:200377PubMedPubMedCentralCrossRef
31.
go back to reference Olaku V, Matzke A, Mitchell C, Hasenauer S, Sakkaravarthi A, Pace G, Ponta H, Orian-Rousseau V (2011) c-Met recruits ICAM-1 as a coreceptor to compensate for the loss of CD44 in Cd44 null mice. Mol Biol Cell 22:2777–2786PubMedPubMedCentralCrossRef Olaku V, Matzke A, Mitchell C, Hasenauer S, Sakkaravarthi A, Pace G, Ponta H, Orian-Rousseau V (2011) c-Met recruits ICAM-1 as a coreceptor to compensate for the loss of CD44 in Cd44 null mice. Mol Biol Cell 22:2777–2786PubMedPubMedCentralCrossRef
32.
go back to reference Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46:1271–1277PubMedCrossRef Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46:1271–1277PubMedCrossRef
33.
go back to reference Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288:6850–6912PubMedCrossRef Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288:6850–6912PubMedCrossRef
34.
go back to reference Protin U, Schweighoffer T, Jochum W, Hilberg F (1999) CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J Immunol 163:4917–4923PubMedCrossRef Protin U, Schweighoffer T, Jochum W, Hilberg F (1999) CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J Immunol 163:4917–4923PubMedCrossRef
35.
go back to reference Morath I, Hartmann TN, Orian-Rousseau V (2016) CD44: more than a mere stem cell marker. Int J Biochem Cell Biol 81:166–173PubMedCrossRef Morath I, Hartmann TN, Orian-Rousseau V (2016) CD44: more than a mere stem cell marker. Int J Biochem Cell Biol 81:166–173PubMedCrossRef
36.
go back to reference Orian-Rousseau V, Sleeman J (2014) CD44 is a Multidomain Signaling Platform that Integrates Extracellular Matrix Cues with Growth Factor and Cytokine Signals in Hyaluronan Signaling and Turnover (Simpson, M. A. & Heldin, P., eds) pp. 231–254 Orian-Rousseau V, Sleeman J (2014) CD44 is a Multidomain Signaling Platform that Integrates Extracellular Matrix Cues with Growth Factor and Cytokine Signals in Hyaluronan Signaling and Turnover (Simpson, M. A. & Heldin, P., eds) pp. 231–254
37.
go back to reference Morath I, Jung C, Leveque R, Linfeng C, Toillon RA, Warth A, Orian-Rousseau V (2018) Differential recruitment of CD44 isoforms by ErbB ligands reveals an involvement of CD44 in breast cancer. Oncogene 37:1472–1484PubMedCrossRef Morath I, Jung C, Leveque R, Linfeng C, Toillon RA, Warth A, Orian-Rousseau V (2018) Differential recruitment of CD44 isoforms by ErbB ligands reveals an involvement of CD44 in breast cancer. Oncogene 37:1472–1484PubMedCrossRef
38.
go back to reference Khan F, Gurung S, Gunassekaran GR, Vadevoo SMP, Chi L, Permpoon U, Haque ME, Lee YK, Lee SW, Kim S, Lee B (2021) Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Theranostics 11:1326–1344PubMedPubMedCentralCrossRef Khan F, Gurung S, Gunassekaran GR, Vadevoo SMP, Chi L, Permpoon U, Haque ME, Lee YK, Lee SW, Kim S, Lee B (2021) Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Theranostics 11:1326–1344PubMedPubMedCentralCrossRef
39.
go back to reference Sherman L, Wainwright D, Ponta H, Herrlich P (1998) A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev 12:1058–1071PubMedPubMedCentralCrossRef Sherman L, Wainwright D, Ponta H, Herrlich P (1998) A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev 12:1058–1071PubMedPubMedCentralCrossRef
40.
go back to reference Trouvilliez S, Cicero J, Leveque R, Aubert L, Corbet C, Van Outryve A, Streule K, Angrand PO, Volkel P, Magnez R, Brysbaert G, Mysiorek C, Gosselet F, Bourette R, Adriaenssens E, Thuru X, Lagadec C, de Ruyck J, Orian-Rousseau V, Le Bourhis X, Toillon RA (2022) Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells. J Exp Clin Cancer Res 41:110PubMedPubMedCentralCrossRef Trouvilliez S, Cicero J, Leveque R, Aubert L, Corbet C, Van Outryve A, Streule K, Angrand PO, Volkel P, Magnez R, Brysbaert G, Mysiorek C, Gosselet F, Bourette R, Adriaenssens E, Thuru X, Lagadec C, de Ruyck J, Orian-Rousseau V, Le Bourhis X, Toillon RA (2022) Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells. J Exp Clin Cancer Res 41:110PubMedPubMedCentralCrossRef
41.
go back to reference Wobus M, Rangwala R, Sheyn I, Hennigan R, Coila B, Lower EE, Yassin RS, Sherman LS (2002) CD44 associates with EGFR and erbB2 in metastasizing mammary carcinoma cells. Appl Immunohistochem Mol Morphol 10:34–39PubMedCrossRef Wobus M, Rangwala R, Sheyn I, Hennigan R, Coila B, Lower EE, Yassin RS, Sherman LS (2002) CD44 associates with EGFR and erbB2 in metastasizing mammary carcinoma cells. Appl Immunohistochem Mol Morphol 10:34–39PubMedCrossRef
42.
go back to reference Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V (2013) Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis 4:e819PubMedPubMedCentralCrossRef Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V (2013) Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis 4:e819PubMedPubMedCentralCrossRef
43.
go back to reference Xu T, Verhagen M, Joosten R, Sun W, Sacchetti A, Munoz Sagredo L, Orian-Rousseau V, Fodde R (2022) Alternative splicing downstream of EMT enhances phenotypic plasticity and malignant behavior in colon cancer, Elife 11 Xu T, Verhagen M, Joosten R, Sun W, Sacchetti A, Munoz Sagredo L, Orian-Rousseau V, Fodde R (2022) Alternative splicing downstream of EMT enhances phenotypic plasticity and malignant behavior in colon cancer, Elife 11
44.
go back to reference Yang C, Sheng Y, Shi X, Liu Y, He Y, Du Y, Zhang G, Gao F (2020) CD44/HA signaling mediates acquired resistance to a PI3Kalpha inhibitor. Cell Death Dis 11:831PubMedPubMedCentralCrossRef Yang C, Sheng Y, Shi X, Liu Y, He Y, Du Y, Zhang G, Gao F (2020) CD44/HA signaling mediates acquired resistance to a PI3Kalpha inhibitor. Cell Death Dis 11:831PubMedPubMedCentralCrossRef
45.
go back to reference Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Interplay between chemotherapy-activated Cancer Associated fibroblasts and Cancer initiating cells expressing CD44v6 promotes Colon Cancer Resistance. Front Oncol 12:906415PubMedPubMedCentralCrossRef Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Interplay between chemotherapy-activated Cancer Associated fibroblasts and Cancer initiating cells expressing CD44v6 promotes Colon Cancer Resistance. Front Oncol 12:906415PubMedPubMedCentralCrossRef
46.
go back to reference Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through beta-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 12:906260PubMedPubMedCentralCrossRef Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S (2022) Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through beta-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 12:906260PubMedPubMedCentralCrossRef
47.
go back to reference Chen C, Zhao S, Zhao X, Cao L, Karnad A, Kumar AP, Freeman JW (2022) Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 13:682PubMedPubMedCentralCrossRef Chen C, Zhao S, Zhao X, Cao L, Karnad A, Kumar AP, Freeman JW (2022) Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 13:682PubMedPubMedCentralCrossRef
48.
go back to reference Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4:926–937PubMedCrossRef Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4:926–937PubMedCrossRef
49.
go back to reference Beauvais DM, Nelson SE, Adams KM, Stueven NA, Jung O, Rapraeger AC (2022) Plasma membrane proteoglycans syndecan-2 and syndecan-4 engage with EGFR and RON kinase to sustain carcinoma cell cycle progression. J Biol Chem 298:102029PubMedPubMedCentralCrossRef Beauvais DM, Nelson SE, Adams KM, Stueven NA, Jung O, Rapraeger AC (2022) Plasma membrane proteoglycans syndecan-2 and syndecan-4 engage with EGFR and RON kinase to sustain carcinoma cell cycle progression. J Biol Chem 298:102029PubMedPubMedCentralCrossRef
50.
go back to reference Jung O, Beauvais DM, Adams KM, Rapraeger AC (2019) VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. J Cell Sci 132 Jung O, Beauvais DM, Adams KM, Rapraeger AC (2019) VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. J Cell Sci 132
51.
go back to reference Katakam SK, Pelucchi P, Cocola C, Reinbold R, Vlodavsky I, Greve B, Gotte M (2020) Syndecan-1-Dependent regulation of Heparanase affects invasiveness, Stem Cell properties, and therapeutic resistance of Caco2 Colon cancer cells. Front Oncol 10:774PubMedPubMedCentralCrossRef Katakam SK, Pelucchi P, Cocola C, Reinbold R, Vlodavsky I, Greve B, Gotte M (2020) Syndecan-1-Dependent regulation of Heparanase affects invasiveness, Stem Cell properties, and therapeutic resistance of Caco2 Colon cancer cells. Front Oncol 10:774PubMedPubMedCentralCrossRef
52.
go back to reference Loftus PG, Watson L, Deedigan LM, Camarillo-Retamosa E, Dwyer RM, O’Flynn L, Alagesan S, Griffin M, O’Brien T, Kerin MJ, Elliman SJ, Barkley LR (2021) Targeting stromal cell Syndecan-2 reduces breast tumour growth, metastasis and limits immune evasion. Int J Cancer 148:1245–1259PubMedCrossRef Loftus PG, Watson L, Deedigan LM, Camarillo-Retamosa E, Dwyer RM, O’Flynn L, Alagesan S, Griffin M, O’Brien T, Kerin MJ, Elliman SJ, Barkley LR (2021) Targeting stromal cell Syndecan-2 reduces breast tumour growth, metastasis and limits immune evasion. Int J Cancer 148:1245–1259PubMedCrossRef
53.
go back to reference Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145 Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145
55.
go back to reference Raisch J, Cote-Biron A, Rivard N (2019) A role for the WNT co-receptor LRP6 in Pathogenesis and therapy of epithelial cancers. Cancers (Basel). 11 Raisch J, Cote-Biron A, Rivard N (2019) A role for the WNT co-receptor LRP6 in Pathogenesis and therapy of epithelial cancers. Cancers (Basel). 11
56.
go back to reference Hu YH, Chen Q, Lu YX, Zhang JM, Lin C, Zhang F, Zhang WJ, Li XM, Zhang W, Li XN (2017) Hypermethylation of NDN promotes cell proliferation by activating the wnt signaling pathway in colorectal cancer. Oncotarget 8:46191–46203PubMedPubMedCentralCrossRef Hu YH, Chen Q, Lu YX, Zhang JM, Lin C, Zhang F, Zhang WJ, Li XM, Zhang W, Li XN (2017) Hypermethylation of NDN promotes cell proliferation by activating the wnt signaling pathway in colorectal cancer. Oncotarget 8:46191–46203PubMedPubMedCentralCrossRef
57.
go back to reference Yao Q, An Y, Hou W, Cao YN, Yao MF, Ma NN, Hou L, Zhang H, Liu HJ, Zhang B (2017) LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics. Oncotarget 8:109632–109645PubMedPubMedCentralCrossRef Yao Q, An Y, Hou W, Cao YN, Yao MF, Ma NN, Hou L, Zhang H, Liu HJ, Zhang B (2017) LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics. Oncotarget 8:109632–109645PubMedPubMedCentralCrossRef
59.
go back to reference Ren DN, Chen J, Li Z, Yan H, Yin Y, Wo D, Zhang J, Ao L, Chen B, Ito TK, Chen Y, Liu Z, Li Y, Yang J, Lu X, Peng Y, Pan L, Zhao Y, Liu S, Zhu W (2015) LRP5/6 directly bind to Frizzled and prevent frizzled-regulated tumour metastasis. Nat Commun 6:6906PubMedCrossRef Ren DN, Chen J, Li Z, Yan H, Yin Y, Wo D, Zhang J, Ao L, Chen B, Ito TK, Chen Y, Liu Z, Li Y, Yang J, Lu X, Peng Y, Pan L, Zhao Y, Liu S, Zhu W (2015) LRP5/6 directly bind to Frizzled and prevent frizzled-regulated tumour metastasis. Nat Commun 6:6906PubMedCrossRef
60.
go back to reference Chen M, He X (2019) APC Deficiency leads to beta-catenin stabilization and signaling Independent of LRP5/6. Dev Cell 49:825–826PubMedCrossRef Chen M, He X (2019) APC Deficiency leads to beta-catenin stabilization and signaling Independent of LRP5/6. Dev Cell 49:825–826PubMedCrossRef
61.
go back to reference Cabel CR, Alizadeh E, Robbins DJ, Ahmed Y, Lee E, Thorne CA (2019) Single-cell analyses confirm the critical role of LRP6 for wnt signaling in APC-Deficient cells. Dev Cell 49:827–828PubMedPubMedCentralCrossRef Cabel CR, Alizadeh E, Robbins DJ, Ahmed Y, Lee E, Thorne CA (2019) Single-cell analyses confirm the critical role of LRP6 for wnt signaling in APC-Deficient cells. Dev Cell 49:827–828PubMedPubMedCentralCrossRef
62.
go back to reference Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, Li Q (2013) Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/beta-catenin signal pathway. PLoS ONE 8:e78700PubMedPubMedCentralCrossRef Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, Li Q (2013) Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/beta-catenin signal pathway. PLoS ONE 8:e78700PubMedPubMedCentralCrossRef
63.
go back to reference Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Wang Y, Liu N, Ren J, Hou F, Li Q (2014) Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer 111:736–748PubMedPubMedCentralCrossRef Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Wang Y, Liu N, Ren J, Hou F, Li Q (2014) Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer 111:736–748PubMedPubMedCentralCrossRef
64.
go back to reference Ji Q, Cai G, Liu X, Zhang Y, Wang Y, Zhou L, Sui H, Li Q (2019) MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis 10:378PubMedPubMedCentralCrossRef Ji Q, Cai G, Liu X, Zhang Y, Wang Y, Zhou L, Sui H, Li Q (2019) MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis 10:378PubMedPubMedCentralCrossRef
65.
go back to reference Nie X, Liu H, Ye W, Wei X, Fan L, Ma H, Li L, Xue W, Qi W, Wang YD, Chen WD (2022) LRP5 promotes cancer stem cell traits and chemoresistance in colorectal cancer. J Cell Mol Med 26:1095–1112PubMedPubMedCentralCrossRef Nie X, Liu H, Ye W, Wei X, Fan L, Ma H, Li L, Xue W, Qi W, Wang YD, Chen WD (2022) LRP5 promotes cancer stem cell traits and chemoresistance in colorectal cancer. J Cell Mol Med 26:1095–1112PubMedPubMedCentralCrossRef
66.
go back to reference Niland S, Eble JA (2020) Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. Adv Exp Med Biol 1223:31–67PubMedCrossRef Niland S, Eble JA (2020) Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. Adv Exp Med Biol 1223:31–67PubMedCrossRef
67.
go back to reference Vanveldhuizen PJ, Zulfiqar M, Banerjee S, Cherian R, Saxena NK, Rabe A, Thrasher JB, Banerjee SK (2003) Differential expression of neuropilin-1 in malignant and benign prostatic stromal tissue. Oncol Rep 10:1067–1071PubMed Vanveldhuizen PJ, Zulfiqar M, Banerjee S, Cherian R, Saxena NK, Rabe A, Thrasher JB, Banerjee SK (2003) Differential expression of neuropilin-1 in malignant and benign prostatic stromal tissue. Oncol Rep 10:1067–1071PubMed
68.
go back to reference Kang Y, Zhang Y, Zhang Y, Sun Y (2021) NRP2, a potential biomarker for oral squamous cell carcinoma. Am J Transl Res 13:8938–8951PubMedPubMedCentral Kang Y, Zhang Y, Zhang Y, Sun Y (2021) NRP2, a potential biomarker for oral squamous cell carcinoma. Am J Transl Res 13:8938–8951PubMedPubMedCentral
69.
go back to reference He LH, He YL, Zuo WH, Kang Y, Xue H, Wang LY, Zhang YL, Meng Y (2020) Neuropilin1 silencing impairs the proliferation and migration of cells in pancreatic cancer. J Clin Lab Anal 34:e23394PubMedPubMedCentralCrossRef He LH, He YL, Zuo WH, Kang Y, Xue H, Wang LY, Zhang YL, Meng Y (2020) Neuropilin1 silencing impairs the proliferation and migration of cells in pancreatic cancer. J Clin Lab Anal 34:e23394PubMedPubMedCentralCrossRef
70.
go back to reference Zhang J, Zhang X, Li Z, Wang Q, Shi Y, Jiang X, Sun X (2021) The miR-124-3p/Neuropilin-1 Axis contributes to the Proliferation and Metastasis of Triple-negative breast Cancer cells and co-activates the TGF-beta pathway. Front Oncol 11:654672PubMedPubMedCentralCrossRef Zhang J, Zhang X, Li Z, Wang Q, Shi Y, Jiang X, Sun X (2021) The miR-124-3p/Neuropilin-1 Axis contributes to the Proliferation and Metastasis of Triple-negative breast Cancer cells and co-activates the TGF-beta pathway. Front Oncol 11:654672PubMedPubMedCentralCrossRef
71.
go back to reference Nissen JC, Selwood DL, Tsirka SE (2013) Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J Neurochem 127:394–402PubMedPubMedCentralCrossRef Nissen JC, Selwood DL, Tsirka SE (2013) Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J Neurochem 127:394–402PubMedPubMedCentralCrossRef
72.
go back to reference Chen XJ, Wu S, Yan RM, Fan LS, Yu L, Zhang YM, Wei WF, Zhou CF, Wu XG, Zhong M, Yu YH, Liang L, Wang W (2019) The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer. Mol Carcinog 58:388–397PubMedCrossRef Chen XJ, Wu S, Yan RM, Fan LS, Yu L, Zhang YM, Wei WF, Zhou CF, Wu XG, Zhong M, Yu YH, Liang L, Wang W (2019) The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer. Mol Carcinog 58:388–397PubMedCrossRef
73.
go back to reference Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC (2022) Isoforms of Neuropilin-2 denote Unique Tumor-Associated macrophages in breast Cancer. Front Immunol 13:830169PubMedPubMedCentralCrossRef Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC (2022) Isoforms of Neuropilin-2 denote Unique Tumor-Associated macrophages in breast Cancer. Front Immunol 13:830169PubMedPubMedCentralCrossRef
74.
go back to reference Sarris M, Andersen KG, Randow F, Mayr L, Betz AG (2008) Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28:402–413PubMedPubMedCentralCrossRef Sarris M, Andersen KG, Randow F, Mayr L, Betz AG (2008) Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28:402–413PubMedPubMedCentralCrossRef
75.
go back to reference Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J, Workman CJ, Vignali DA (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501:252–256PubMedPubMedCentralCrossRef Delgoffe GM, Woo SR, Turnis ME, Gravano DM, Guy C, Overacre AE, Bettini ML, Vogel P, Finkelstein D, Bonnevier J, Workman CJ, Vignali DA (2013) Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501:252–256PubMedPubMedCentralCrossRef
76.
go back to reference Tian H, Mythreye K, Golzio C, Katsanis N, Blobe GC (2012) Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. EMBO J 31:3885–3900PubMedPubMedCentralCrossRef Tian H, Mythreye K, Golzio C, Katsanis N, Blobe GC (2012) Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. EMBO J 31:3885–3900PubMedPubMedCentralCrossRef
77.
go back to reference Ollauri-Ibanez C, Nunez-Gomez E, Egido-Turrion C, Silva-Sousa L, Diaz-Rodriguez E, Rodriguez-Barbero A, Lopez-Novoa JM, Pericacho M (2020) Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 23:231–247PubMedPubMedCentralCrossRef Ollauri-Ibanez C, Nunez-Gomez E, Egido-Turrion C, Silva-Sousa L, Diaz-Rodriguez E, Rodriguez-Barbero A, Lopez-Novoa JM, Pericacho M (2020) Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 23:231–247PubMedPubMedCentralCrossRef
78.
go back to reference Paauwe M, Heijkants RC, Oudt CH, van Pelt GW, Cui C, Theuer CP, Hardwick JC, Sier CF, Hawinkels LJ (2016) Endoglin targeting inhibits tumor angiogenesis and metastatic spread in breast cancer. Oncogene 35:4069–4079PubMedCrossRef Paauwe M, Heijkants RC, Oudt CH, van Pelt GW, Cui C, Theuer CP, Hardwick JC, Sier CF, Hawinkels LJ (2016) Endoglin targeting inhibits tumor angiogenesis and metastatic spread in breast cancer. Oncogene 35:4069–4079PubMedCrossRef
79.
go back to reference Uneda S, Toi H, Tsujie T, Tsujie M, Harada N, Tsai H, Seon BK (2009) Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer 125:1446–1453PubMedPubMedCentralCrossRef Uneda S, Toi H, Tsujie T, Tsujie M, Harada N, Tsai H, Seon BK (2009) Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer 125:1446–1453PubMedPubMedCentralCrossRef
80.
go back to reference Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, Franco M, Paez-Ribes M, Cordiner R, Fuxe J, Johansson BR, Goumans MJ, Casanovas O, ten Dijke P, Arthur HM, Pietras K (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579PubMedPubMedCentralCrossRef Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, Franco M, Paez-Ribes M, Cordiner R, Fuxe J, Johansson BR, Goumans MJ, Casanovas O, ten Dijke P, Arthur HM, Pietras K (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579PubMedPubMedCentralCrossRef
81.
go back to reference Ahluwalia MS, Rogers LR, Chaudhary R, Newton H, Ozair A, Khosla AA, Nixon AB, Adams BJ, Seon BK, Peereboom DM, Theuer CP (2023) Endoglin inhibitor TRC105 with or without bevacizumab for bevacizumab-refractory glioblastoma (ENDOT): a multicenter phase II trial. Commun Med (Lond) 3:120PubMedCrossRef Ahluwalia MS, Rogers LR, Chaudhary R, Newton H, Ozair A, Khosla AA, Nixon AB, Adams BJ, Seon BK, Peereboom DM, Theuer CP (2023) Endoglin inhibitor TRC105 with or without bevacizumab for bevacizumab-refractory glioblastoma (ENDOT): a multicenter phase II trial. Commun Med (Lond) 3:120PubMedCrossRef
82.
go back to reference De Crescenzo G, Hinck CS, Shu Z, Zúñiga J, Yang J, Tang Y, Baardsnes J, Mendoza V, Sun L, López-Casillas F (2006) Three key residues underlie the differential affinity of the TGFβ isoforms for the TGFβ type II receptor. J Mol Biol 355:47–62PubMedCrossRef De Crescenzo G, Hinck CS, Shu Z, Zúñiga J, Yang J, Tang Y, Baardsnes J, Mendoza V, Sun L, López-Casillas F (2006) Three key residues underlie the differential affinity of the TGFβ isoforms for the TGFβ type II receptor. J Mol Biol 355:47–62PubMedCrossRef
83.
go back to reference Chapman SC, Bernard DJ, Jelen J, Woodruff TK (2002) Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Mol Cell Endocrinol 196:79–93PubMedCrossRef Chapman SC, Bernard DJ, Jelen J, Woodruff TK (2002) Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Mol Cell Endocrinol 196:79–93PubMedCrossRef
84.
go back to reference Wiater E, Vale W (2003) Inhibin is an antagonist of bone morphogenetic protein signaling. J Biol Chem 278:7934–7941PubMedCrossRef Wiater E, Vale W (2003) Inhibin is an antagonist of bone morphogenetic protein signaling. J Biol Chem 278:7934–7941PubMedCrossRef
85.
go back to reference You HJ, How T, Blobe GC (2009) The type III transforming growth factor-β receptor negatively regulates nuclear factor kappa B signaling through its interaction with β-arrestin2. Carcinogenesis 30:1281–1287PubMedPubMedCentralCrossRef You HJ, How T, Blobe GC (2009) The type III transforming growth factor-β receptor negatively regulates nuclear factor kappa B signaling through its interaction with β-arrestin2. Carcinogenesis 30:1281–1287PubMedPubMedCentralCrossRef
86.
go back to reference Mythreye K, Blobe GC (2009) The type III TGF-β receptor regulates epithelial and cancer cell migration through β-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci 106:8221–8226PubMedPubMedCentralCrossRef Mythreye K, Blobe GC (2009) The type III TGF-β receptor regulates epithelial and cancer cell migration through β-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci 106:8221–8226PubMedPubMedCentralCrossRef
87.
go back to reference Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O’Connell K, Mythreye K (2016) Altering the proteoglycan state of transforming growth factor β type III receptor (TβRIII)/betaglycan modulates canonical Wnt/β-catenin signaling. J Biol Chem 291:25716–25728PubMedPubMedCentralCrossRef Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O’Connell K, Mythreye K (2016) Altering the proteoglycan state of transforming growth factor β type III receptor (TβRIII)/betaglycan modulates canonical Wnt/β-catenin signaling. J Biol Chem 291:25716–25728PubMedPubMedCentralCrossRef
88.
go back to reference Ostadrahimi A, Esfahani A, Asghari Jafarabadi M, Eivazi Ziaei J, Movassaghpourakbari A, Farrin N (2014) Effect of Beta glucan on quality of life in women with breast cancer undergoing chemotherapy: a randomized double-blind placebo-controlled clinical trial. Adv Pharm Bull 4:471–477PubMedPubMedCentral Ostadrahimi A, Esfahani A, Asghari Jafarabadi M, Eivazi Ziaei J, Movassaghpourakbari A, Farrin N (2014) Effect of Beta glucan on quality of life in women with breast cancer undergoing chemotherapy: a randomized double-blind placebo-controlled clinical trial. Adv Pharm Bull 4:471–477PubMedPubMedCentral
89.
90.
go back to reference Vander Velde R, Yoon N, Marusyk V, Durmaz A, Dhawan A, Miroshnychenko D, Lozano-Peral D, Desai B, Balynska O, Poleszhuk J, Kenian L, Teng M, Abazeed M, Mian O, Tan AC, Haura E, Scott J, Marusyk A (2020) Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat Commun 11:2393PubMedPubMedCentralCrossRef Vander Velde R, Yoon N, Marusyk V, Durmaz A, Dhawan A, Miroshnychenko D, Lozano-Peral D, Desai B, Balynska O, Poleszhuk J, Kenian L, Teng M, Abazeed M, Mian O, Tan AC, Haura E, Scott J, Marusyk A (2020) Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat Commun 11:2393PubMedPubMedCentralCrossRef
91.
go back to reference Sabnis AJ, Bivona TG (2019) Principles of resistance to targeted Cancer Therapy: lessons from Basic and Translational Cancer Biology. Trends Mol Med 25:185–197PubMedPubMedCentralCrossRef Sabnis AJ, Bivona TG (2019) Principles of resistance to targeted Cancer Therapy: lessons from Basic and Translational Cancer Biology. Trends Mol Med 25:185–197PubMedPubMedCentralCrossRef
92.
go back to reference Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Catzavelos C, Rak J, Furlonger C, Zakarian A, Simard JJ, Ohashi PS, Paige CJ, Gutierrez-Ramos JC, Mak TW (1997) CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90:2217–2233PubMedCrossRef Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Catzavelos C, Rak J, Furlonger C, Zakarian A, Simard JJ, Ohashi PS, Paige CJ, Gutierrez-Ramos JC, Mak TW (1997) CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90:2217–2233PubMedCrossRef
93.
go back to reference Lodewijk I, Duenas M, Paramio JM, Rubio C (2023) CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 14:1272681PubMedPubMedCentralCrossRef Lodewijk I, Duenas M, Paramio JM, Rubio C (2023) CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 14:1272681PubMedPubMedCentralCrossRef
94.
go back to reference Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, van Dongen GA (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12:6064–6072PubMedCrossRef Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, van Dongen GA (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12:6064–6072PubMedCrossRef
95.
go back to reference Menke-van der Houven, van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HM, van der Graaf WT, Christen R, Ruttinger D, Weigand S, Cannarile MA, Heil F, Brewster M, Walz AC, Nayak TK, Guarin E, Meresse V, Le Tourneau C (2016) First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget 7:80046–80058CrossRef Menke-van der Houven, van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HM, van der Graaf WT, Christen R, Ruttinger D, Weigand S, Cannarile MA, Heil F, Brewster M, Walz AC, Nayak TK, Guarin E, Meresse V, Le Tourneau C (2016) First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget 7:80046–80058CrossRef
96.
97.
go back to reference Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820PubMedPubMedCentralCrossRef Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820PubMedPubMedCentralCrossRef
98.
go back to reference Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, Wexler L, Kaplan RN (2016) Activation of hematopoietic Stem/Progenitor cells promotes Immunosuppression within the pre-metastatic niche. Cancer Res 76:1335–1347PubMedCrossRef Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, Wexler L, Kaplan RN (2016) Activation of hematopoietic Stem/Progenitor cells promotes Immunosuppression within the pre-metastatic niche. Cancer Res 76:1335–1347PubMedCrossRef
Metadata
Title
Targeting CD44 and other pleiotropic co-receptors as a means for broad inhibition of tumor growth and metastasis
Authors
Lisa-Marie Mehner
Leonel Munoz-Sagredo
Steffen Joachim Sonnentag
Sven Máté Treffert
Véronique Orian-Rousseau
Publication date
18-05-2024
Publisher
Springer Netherlands
Keyword
Metastasis
Published in
Clinical & Experimental Metastasis
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-024-10292-4
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine