Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2008

Open Access 01-12-2008 | Technical Note

Tadpole system as new lumbar spinal instrumentation

Authors: Yuichi Kasai, Tadashi Inaba, Koji Akeda, Atsumasa Uchida

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2008

Login to get access

Abstract

Background

There have been reports of serious complications associated with pedicle screw fixation, including nerve root injuries caused by accidental screw insertion. We have developed a new system of lumbar spinal instrumentation that we call Tadpole system®. The purposes of this report were to show the results of a biomechanical study and the short-term outcome of a clinical study, as well as to determine the usefulness of this system.

Methods

The Tadpole system® lumbar spinal fusion is a hook-and-rod system according to which the spine is stabilized using 2 sets of 2 spinous processes each that are held in place by 4 hooks tandemly connected to a rod. The biomechanical study was done using 5 human lumbar cadaveric spines, and the range of motion (ROM) was examined in a non-treatment model, an injured model, a pedicle screw fixation model and a Tadpole system® model. For the short-term clinical study the Tadpole system® was used in 31 patients, and the factors analyzed were operation time, time required for spinal instrumentation, amount of intraoperative bleeding, postoperative improvement rate of the Japanese Orthopaedic Association (JOA) score for lumbar spinal disorders, instrumentation failure, spinous process fracture, spinal fluid leakage, nerve root injury, postoperative infection, and bone fusion 2 years after the operation.

Results

The ROM in the Tadpole system® model was slightly bigger than that in the pedicle screw fixation model, but smaller than that in the normal control model. These biomechanical data indicated that the Tadpole system® provided fairly good stability. The mean operation time was 79 min, the mean time required for spinal instrumentation was 8 min, and the mean amount of intraoperative bleeding was 340 mL. The mean postoperative improvement rate of JOA score was 70.9 ± 24.8%. Instrumentation failure (dislocation of a hook) occurred in one patient, and none of the patients developed spinous process fracture, spinal fluid leakage, nerve root injury, or postoperative infection. Two years after the operation, bone union was confirmed in 29 of the 31 patients (93.5%).

Conclusion

We conclude that this system is a useful, easy-to-use and safe spinal instrumentation technique for lumbar fusion surgery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Esses SI, Sachs BL, Dreyzin V: Complication associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine. 1993, 18: 2231-2238.CrossRefPubMed Esses SI, Sachs BL, Dreyzin V: Complication associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine. 1993, 18: 2231-2238.CrossRefPubMed
2.
go back to reference Jutte PC, Castelein RM: Complications of pedicle screws in lumbar and lumbosacral fusion in 105 consecutive primary operations. Eur Spine J. 2002, 11: 594-598. 10.1007/s00586-002-0469-8.CrossRefPubMed Jutte PC, Castelein RM: Complications of pedicle screws in lumbar and lumbosacral fusion in 105 consecutive primary operations. Eur Spine J. 2002, 11: 594-598. 10.1007/s00586-002-0469-8.CrossRefPubMed
3.
go back to reference Heller KD, Prescher A, Schneider T, Block FR, Frost R: Stability of different wiring techniques in segmental spinal instrumentation; An experimental study. Arch Orthop Trauma Surg. 1998, 117: 96-99. 10.1007/BF00703452.CrossRefPubMed Heller KD, Prescher A, Schneider T, Block FR, Frost R: Stability of different wiring techniques in segmental spinal instrumentation; An experimental study. Arch Orthop Trauma Surg. 1998, 117: 96-99. 10.1007/BF00703452.CrossRefPubMed
4.
go back to reference Wang JC, Haid RW, Miller JS, Robinson JC: Comparison of CD HORIZON SPIRE spinous process plate stabilization and pedicle screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine. 2006, 4: 132-136. 10.3171/spi.2006.4.2.132.CrossRefPubMed Wang JC, Haid RW, Miller JS, Robinson JC: Comparison of CD HORIZON SPIRE spinous process plate stabilization and pedicle screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine. 2006, 4: 132-136. 10.3171/spi.2006.4.2.132.CrossRefPubMed
5.
go back to reference Bostman O, Myllynen P, Riska EB: Posterior spinal fussion using internal fixation with the Daab plate. Acta OrthopScand. 1984, 55: 310-314. 10.3109/17453678408992363.CrossRef Bostman O, Myllynen P, Riska EB: Posterior spinal fussion using internal fixation with the Daab plate. Acta OrthopScand. 1984, 55: 310-314. 10.3109/17453678408992363.CrossRef
6.
go back to reference Wilson PD, Straub LR: Lumbosacral fusion with metallic plate fixation. Instr Course Lect. 1952, 9: 52-57. Wilson PD, Straub LR: Lumbosacral fusion with metallic plate fixation. Instr Course Lect. 1952, 9: 52-57.
7.
go back to reference Drummond DS, Keene JS: Spinous process segmental spinal instrumentation. Orthopedics. 1988, 11: 1403-1410.PubMed Drummond DS, Keene JS: Spinous process segmental spinal instrumentation. Orthopedics. 1988, 11: 1403-1410.PubMed
8.
go back to reference Coe JD, Warden KE, Herzig MA, McAfee PC: Influence of bone mineral density on the fixation of thoracolumbar implants: A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine. 1990, 15: 902-907. 10.1097/00007632-199009000-00012.CrossRefPubMed Coe JD, Warden KE, Herzig MA, McAfee PC: Influence of bone mineral density on the fixation of thoracolumbar implants: A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine. 1990, 15: 902-907. 10.1097/00007632-199009000-00012.CrossRefPubMed
9.
go back to reference Fuji T, Hosono N, Kato Y: The Lumbar Alligator Spinal System – A simple and less invasive device for posterior lumbar fixation. Spinal Reconstruction. Clinical examples of applied basic science, biomechanics and engineering. Edited by: Kai-Uwe Lewandrowski. 2007, New York London; Informa, 81-90.CrossRef Fuji T, Hosono N, Kato Y: The Lumbar Alligator Spinal System – A simple and less invasive device for posterior lumbar fixation. Spinal Reconstruction. Clinical examples of applied basic science, biomechanics and engineering. Edited by: Kai-Uwe Lewandrowski. 2007, New York London; Informa, 81-90.CrossRef
10.
go back to reference Wang JC, Spencer D, Robinson JC: SPIRE spinous process plate: biomechanical evaluation of a novel technology. J Neurosurg Spine. 2006, 4: 160-164. 10.3171/spi.2006.4.2.160.CrossRefPubMed Wang JC, Spencer D, Robinson JC: SPIRE spinous process plate: biomechanical evaluation of a novel technology. J Neurosurg Spine. 2006, 4: 160-164. 10.3171/spi.2006.4.2.160.CrossRefPubMed
11.
go back to reference Shepend DET, Leahy JC, Mathias KJ, Wilkinson SJ, Hukins DW: Spinous process strength. Spine. 2000, 25: 319-323. 10.1097/00007632-200002010-00010.CrossRef Shepend DET, Leahy JC, Mathias KJ, Wilkinson SJ, Hukins DW: Spinous process strength. Spine. 2000, 25: 319-323. 10.1097/00007632-200002010-00010.CrossRef
12.
go back to reference Fischgrund JS, Markay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT: Degenerative lumbar spondylolisthesis with spinal stenosis; a prospective, randomized study compareing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine. 1997, 22: 2807-2812. 10.1097/00007632-199712150-00003.CrossRefPubMed Fischgrund JS, Markay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT: Degenerative lumbar spondylolisthesis with spinal stenosis; a prospective, randomized study compareing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine. 1997, 22: 2807-2812. 10.1097/00007632-199712150-00003.CrossRefPubMed
13.
go back to reference Thomson K, Christensen FBm, Eiskjaer SP, Hansen ES, Fruensgaard S, Bunger CE: The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral fusion; a prospective randomized clinical study. Spine. 1997, 22: 2813-2822. 10.1097/00007632-199712150-00004.CrossRef Thomson K, Christensen FBm, Eiskjaer SP, Hansen ES, Fruensgaard S, Bunger CE: The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral fusion; a prospective randomized clinical study. Spine. 1997, 22: 2813-2822. 10.1097/00007632-199712150-00004.CrossRef
14.
go back to reference Zdeblick TA: A prospective, randomized study of lumbar fusion; Preliminary results. Spine. 1993, 18: 983-991.CrossRefPubMed Zdeblick TA: A prospective, randomized study of lumbar fusion; Preliminary results. Spine. 1993, 18: 983-991.CrossRefPubMed
Metadata
Title
Tadpole system as new lumbar spinal instrumentation
Authors
Yuichi Kasai
Tadashi Inaba
Koji Akeda
Atsumasa Uchida
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2008
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/1749-799X-3-41

Other articles of this Issue 1/2008

Journal of Orthopaedic Surgery and Research 1/2008 Go to the issue