Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2012

Open Access 01-12-2012 | Research

Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition

Authors: Israel Valverde, Sarah Nordmeyer, Sergio Uribe, Gerald Greil, Felix Berger, Titus Kuehne, Philipp Beerbaum

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2012

Login to get access

Abstract

Background

Systemic-to-pulmonary collateral flow (SPCF) may constitute a risk factor for increased morbidity and mortality in patients with single-ventricle physiology (SV). However, clinical research is limited by the complexity of multi-vessel two-dimensional (2D) cardiovascular magnetic resonance (CMR) flow measurements. We sought to validate four-dimensional (4D) velocity acquisition sequence for concise quantification of SPCF and flow distribution in patients with SV.

Methods

29 patients with SV physiology prospectively underwent CMR (1.5 T) (n = 14 bidirectional cavopulmonary connection [BCPC], age 2.9 ± 1.3 years; and n = 15 Fontan, 14.4 ± 5.9 years) and 20 healthy volunteers (age, 28.7 ± 13.1 years) served as controls. A single whole-heart 4D velocity acquisition and five 2D flow acquisitions were performed in the aorta, superior/inferior caval veins, right/left pulmonary arteries to serve as gold-standard. The five 2D velocity acquisition measurements were compared with 4D velocity acquisition for validation of individual vessel flow quantification and time efficiency. The SPCF was calculated by evaluating the disparity between systemic (aortic minus caval vein flows) and pulmonary flows (arterial and venour return). The pulmonary right to left and the systemic lower to upper body flow distribution were also calculated.

Results

The comparison between 4D velocity and 2D flow acquisitions showed good Bland-Altman agreement for all individual vessels (mean bias, 0.05±0.24 l/min/m2), calculated SPCF (−0.02±0.18 l/min/m2) and significantly shorter 4D velocity acquisition-time (12:34 min/17:28 min,p < 0.01). 4D velocity acquisition in patients versus controls revealed (1) good agreement between systemic versus pulmonary estimator for SPFC; (2) significant SPCF in patients (BCPC 0.79±0.45 l/min/m2; Fontan 0.62±0.82 l/min/m2) and not in controls (0.01 + 0.16 l/min/m2), (3) inverse relation of right/left pulmonary artery perfusion and right/left SPCF (Pearson = −0.47,p = 0.01) and (4) upper to lower body flow distribution trend related to the weight (r = 0.742, p < 0.001) similar to the controls.

Conclusions

4D velocity acquisition is reliable, operator-independent and more time-efficient than 2D flow acquisition to quantify SPCF. There is considerable SPCF in BCPC and Fontan patients. SPCF was more pronounced towards the respective lung with less pulmonary arterial flow suggesting more collateral flow where less anterograde branch pulmonary artery perfusion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Triedman JK, Bridges ND, Mayer JE, Lock JE: Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993, 22: 207-15. 10.1016/0735-1097(93)90836-P.CrossRefPubMed Triedman JK, Bridges ND, Mayer JE, Lock JE: Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol. 1993, 22: 207-15. 10.1016/0735-1097(93)90836-P.CrossRefPubMed
2.
go back to reference Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ: Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging. 2009, 2: 405-11.PubMedCentralCrossRefPubMed Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ: Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging. 2009, 2: 405-11.PubMedCentralCrossRefPubMed
3.
go back to reference Grosse-Wortmann L, Al-Otay A, Yoo S: Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009, 2: 219-10.1161/CIRCIMAGING.108.834192.CrossRefPubMed Grosse-Wortmann L, Al-Otay A, Yoo S: Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009, 2: 219-10.1161/CIRCIMAGING.108.834192.CrossRefPubMed
4.
5.
go back to reference Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T: Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging: JMRI. 2010, 32: 677-83. 10.1002/jmri.22280.CrossRefPubMed Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T: Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging: JMRI. 2010, 32: 677-83. 10.1002/jmri.22280.CrossRefPubMed
6.
go back to reference Whitehead KK, Sundareswaran KS, Parks WJ, Harris MA, Yoganathan AP, Fogel MA: Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg. 2009, 138: 96-102. 10.1016/j.jtcvs.2008.11.062.PubMedCentralCrossRefPubMed Whitehead KK, Sundareswaran KS, Parks WJ, Harris MA, Yoganathan AP, Fogel MA: Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg. 2009, 138: 96-102. 10.1016/j.jtcvs.2008.11.062.PubMedCentralCrossRefPubMed
7.
go back to reference Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T: Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med: Off J Soc Magn Reson Med/ Soc Magn Reson Med. 2009, 62: 984-92.CrossRef Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T: Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med: Off J Soc Magn Reson Med/ Soc Magn Reson Med. 2009, 62: 984-92.CrossRef
8.
go back to reference Beerbaum P, Körperich H, Barth P, Esdorn H, Gieseke J, Meyer H: Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001, 103: 2476-82. 10.1161/01.CIR.103.20.2476.CrossRefPubMed Beerbaum P, Körperich H, Barth P, Esdorn H, Gieseke J, Meyer H: Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001, 103: 2476-82. 10.1161/01.CIR.103.20.2476.CrossRefPubMed
9.
go back to reference Goo HW, Al-Otay A, Grosse-Wortmann L, Wu S, Macgowan CK, Yoo SJ: Phase-contrast magnetic resonance quantification of normal pulmonary venous return. J Magn Reson Imaging: JMRI. 2009, 29: 588-94. 10.1002/jmri.21691.CrossRefPubMed Goo HW, Al-Otay A, Grosse-Wortmann L, Wu S, Macgowan CK, Yoo SJ: Phase-contrast magnetic resonance quantification of normal pulmonary venous return. J Magn Reson Imaging: JMRI. 2009, 29: 588-94. 10.1002/jmri.21691.CrossRefPubMed
10.
go back to reference Inuzuka R, Aotsuka H, Nakajima H, Yamazawa H, Sugamoto K, Tatebe S, Aoki M, Fujiwara T: Quantification of collateral aortopulmonary flow in patients subsequent to construction of bidirectional cavopulmonary shunts. Cardiol Young. 2008, 18: 485-93.PubMed Inuzuka R, Aotsuka H, Nakajima H, Yamazawa H, Sugamoto K, Tatebe S, Aoki M, Fujiwara T: Quantification of collateral aortopulmonary flow in patients subsequent to construction of bidirectional cavopulmonary shunts. Cardiol Young. 2008, 18: 485-93.PubMed
11.
go back to reference McElhinney DB, Reddy VM, Tworetzky W, Petrossian E, Hanley FL, Moore P: Incidence and implications of systemic to pulmonary collaterals after bidirectional cavopulmonary anastomosis. Ann Thorac Surg. 2000, 69: 1222-8. 10.1016/S0003-4975(99)01088-7.CrossRefPubMed McElhinney DB, Reddy VM, Tworetzky W, Petrossian E, Hanley FL, Moore P: Incidence and implications of systemic to pulmonary collaterals after bidirectional cavopulmonary anastomosis. Ann Thorac Surg. 2000, 69: 1222-8. 10.1016/S0003-4975(99)01088-7.CrossRefPubMed
12.
go back to reference Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992, 359: 843-5. 10.1038/359843a0.CrossRefPubMed Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992, 359: 843-5. 10.1038/359843a0.CrossRefPubMed
13.
go back to reference Mori Y, Shoji M, Nakanishi T, Fujii T, Nakazawa M: Elevated vascular endothelial growth factor levels are associated with aortopulmonary collateral vessels in patients before and after the Fontan procedure. Am Heart J. 2007, 153: 987-94. 10.1016/j.ahj.2007.03.009.CrossRefPubMed Mori Y, Shoji M, Nakanishi T, Fujii T, Nakazawa M: Elevated vascular endothelial growth factor levels are associated with aortopulmonary collateral vessels in patients before and after the Fontan procedure. Am Heart J. 2007, 153: 987-94. 10.1016/j.ahj.2007.03.009.CrossRefPubMed
14.
go back to reference Salim MA, DiSessa TG, Arheart KL, Alpert BS: Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study. Circulation. 1995, 92: 1860-5. 10.1161/01.CIR.92.7.1860.CrossRefPubMed Salim MA, DiSessa TG, Arheart KL, Alpert BS: Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study. Circulation. 1995, 92: 1860-5. 10.1161/01.CIR.92.7.1860.CrossRefPubMed
15.
go back to reference Frydrychowicz A, Francois CJ, Turski PA: Four-dimensional phase contrast magnetic resonance angiography: Potential clinical applications. Eur J Radiol. 2011, 80: 24-35. 10.1016/j.ejrad.2011.01.094.PubMedCentralCrossRefPubMed Frydrychowicz A, Francois CJ, Turski PA: Four-dimensional phase contrast magnetic resonance angiography: Potential clinical applications. Eur J Radiol. 2011, 80: 24-35. 10.1016/j.ejrad.2011.01.094.PubMedCentralCrossRefPubMed
16.
go back to reference Markl M, Geiger J, Kilner PJ, Foll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A: Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg. 2011, 39: 206-12. 10.1016/j.ejcts.2010.05.026.CrossRefPubMed Markl M, Geiger J, Kilner PJ, Foll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A: Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg. 2011, 39: 206-12. 10.1016/j.ejcts.2010.05.026.CrossRefPubMed
17.
go back to reference Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T: In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation. 1998, 98: 2873-82. 10.1161/01.CIR.98.25.2873.CrossRefPubMed Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T: In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation. 1998, 98: 2873-82. 10.1161/01.CIR.98.25.2873.CrossRefPubMed
18.
go back to reference Lotz J, Meier C, Leppert A, Galanski M: Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics: Rev Publ Radiol Soc North America, Inc. 2002, 22: 651-71.CrossRef Lotz J, Meier C, Leppert A, Galanski M: Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics: Rev Publ Radiol Soc North America, Inc. 2002, 22: 651-71.CrossRef
19.
go back to reference Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation. 2000, 102: III148-53.PubMed Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR: Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation. 2000, 102: III148-53.PubMed
Metadata
Title
Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition
Authors
Israel Valverde
Sarah Nordmeyer
Sergio Uribe
Gerald Greil
Felix Berger
Titus Kuehne
Philipp Beerbaum
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2012
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-14-25

Other articles of this Issue 1/2012

Journal of Cardiovascular Magnetic Resonance 1/2012 Go to the issue