Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2016

01-02-2016 | Original Article

Synthesis and evaluation of a new vesamicol analog o-[11C]methyl-trans-decalinvesamicol as a PET ligand for the vesicular acetylcholine transporter

Authors: Yoji Kitamura, Takashi Kozaka, Daisuke Miwa, Izumi Uno, Mohammad Anwar-ul Azim, Kazuma Ogawa, Junichi Taki, Seigo Kinuya, Kazuhiro Shiba

Published in: Annals of Nuclear Medicine | Issue 2/2016

Login to get access

Abstract

Introduction

We focused on the vesicle acetyl choline transporter (VAChT) as target for early diagnosis of Alzheimer’s diseases because the dysfunction of the cholinergic nervous system is closely associated with the symptoms of AD, such as problem in recognition, memory, and learning. Due to its low binding affinity for the sigma receptors (σ-1 and σ-2), o-methyl-trans-decalinvesamicol (OMDV) demonstrated a high binding affinity and selectivity for vesicular acetyl choline transporter (VAChT). [11C]OMDV was prepared and investigated the potential as a new PET ligand for VAChT imaging through in vivo evaluation.

Method

[11C]OMDV was prepared by a palladium-promoted cross-coupling reaction using [11C]methyl iodide, with a radiochemical yield of 60–75 %, a radiochemical purity of greater than 98 %, and a specific activity of 5–10 TBq/mmol 30 min after EOB. In vivo biodistribution study of [11C]OMDV in blood, brain regions and major organs of rats was performed at 2, 10, 30 and 60 min post-injection. In vivo blocking study and PET–CT imaging study were performed to check the binding selectivity of [11C]OMDV for VAChT.

Results

In vivo studies demonstrated [11C]OMDV passage through the blood–brain barrier (BBB) and accumulation in the rat brain. The regional brain accumulation of [11C]OMDV was significantly inhibited by co-administration of vesamicol. In contrast, brain accumulation of [11C]OMDV was not significantly altered by co-administration of (+)-pentazocine, a selective σ-1 receptor ligand, or (+)-3-(3-hydroxyphenyl)-N-propylpiperidine [(+)-3-PPP], a σ-1 and σ-2 receptor ligand. PET–CT imaging revealed inhibition of [11C]OMDV accumulation in the brain by co-administration of vesamicol.

Conclusion

[11C]OMDV selectively binds to VAChT with high affinity in the rat brain in vivo, and that [11C]OMDV may be utilized in the future as a specific VAChT ligand for PET imaging.
Literature
1.
go back to reference Mohs RC, Doody RS, Morris JC, Ieni JR, Rogers SL, Perdomo CA, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil. Neurology. 2001;57:481–8.CrossRefPubMed Mohs RC, Doody RS, Morris JC, Ieni JR, Rogers SL, Perdomo CA, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil. Neurology. 2001;57:481–8.CrossRefPubMed
2.
go back to reference Gauthier S, Lopez OL, Waldermar G, Lones RW, Cummings J, Zhang R, et al. Effects of donepezil on activities of daily living: integrated analysis of patient data from studies in mild, moderate and severe Alzheimer’s disease. Int Psychogeriatr. 2010;22:973–83.CrossRefPubMed Gauthier S, Lopez OL, Waldermar G, Lones RW, Cummings J, Zhang R, et al. Effects of donepezil on activities of daily living: integrated analysis of patient data from studies in mild, moderate and severe Alzheimer’s disease. Int Psychogeriatr. 2010;22:973–83.CrossRefPubMed
3.
go back to reference McGeer PL. Aging, Alzheimer’s disease, and the cholinergic system. Can J Physiol Pharmacol. 1984;62:741–54.CrossRefPubMed McGeer PL. Aging, Alzheimer’s disease, and the cholinergic system. Can J Physiol Pharmacol. 1984;62:741–54.CrossRefPubMed
4.
go back to reference Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics. J Neurosci Res. 1990;27:576–86.CrossRefPubMed Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics. J Neurosci Res. 1990;27:576–86.CrossRefPubMed
5.
go back to reference Efange SM, Garland EM, Staley JK, Khare AB, Mash DC. Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging. 1997;18(4):407–13.CrossRefPubMed Efange SM, Garland EM, Staley JK, Khare AB, Mash DC. Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging. 1997;18(4):407–13.CrossRefPubMed
6.
go back to reference Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Annals of neurology. 1996;40(3):399–410.CrossRefPubMed Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Annals of neurology. 1996;40(3):399–410.CrossRefPubMed
7.
go back to reference Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006;51(5):601–12.CrossRefPubMed Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006;51(5):601–12.CrossRefPubMed
8.
go back to reference Schafer MK, Weihe E, Erickson JD, Eiden LE. Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J Mol Neurosci. 1995;6:225–35.CrossRefPubMed Schafer MK, Weihe E, Erickson JD, Eiden LE. Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J Mol Neurosci. 1995;6:225–35.CrossRefPubMed
9.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P 301 S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P 301 S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed
10.
go back to reference Bar BA, Parsons SM. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Proc Natl Acad Sci USA. 1986;83:2267–70.CrossRef Bar BA, Parsons SM. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Proc Natl Acad Sci USA. 1986;83:2267–70.CrossRef
11.
go back to reference Marshall IG, Parsons SM. The vesicular acetylcholine transport system. TINS. 1987;10:174–7. Marshall IG, Parsons SM. The vesicular acetylcholine transport system. TINS. 1987;10:174–7.
12.
go back to reference Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006;51(5):601–12.CrossRefPubMed Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006;51(5):601–12.CrossRefPubMed
13.
go back to reference Efange SM, Michelson RH, Khare AB, Thomas JR. Synthesis and tissue distribution of (m-[125I]iodobenzyl)trozamicol ([125I]MIBT): potential radioligand for mapping central cholinergic innervation. J Med Chem. 1993;36:1754–60.CrossRefPubMed Efange SM, Michelson RH, Khare AB, Thomas JR. Synthesis and tissue distribution of (m-[125I]iodobenzyl)trozamicol ([125I]MIBT): potential radioligand for mapping central cholinergic innervation. J Med Chem. 1993;36:1754–60.CrossRefPubMed
14.
go back to reference Efange SM, Mach RH, Khare AB, Michelson RH, Nowak PA, Evora PH. [18F]Fluorobenzyltrozamicol ([18F]FBT): molecular decomposition-reconstitution approach to vesamicol receptor radioligands for positron emission tomography. Appl Radiat Isot. 1994;45:465–72.CrossRefPubMed Efange SM, Mach RH, Khare AB, Michelson RH, Nowak PA, Evora PH. [18F]Fluorobenzyltrozamicol ([18F]FBT): molecular decomposition-reconstitution approach to vesamicol receptor radioligands for positron emission tomography. Appl Radiat Isot. 1994;45:465–72.CrossRefPubMed
15.
go back to reference Mulholland GK, Wieland DM, Kilbourn MR, Frey KA, Sherman PS, Carey JE, et al. [18F]Fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse. 1998;30:263–74.CrossRefPubMed Mulholland GK, Wieland DM, Kilbourn MR, Frey KA, Sherman PS, Carey JE, et al. [18F]Fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse. 1998;30:263–74.CrossRefPubMed
16.
go back to reference Sorger D, Schliebs R, Kampfer I, Rossner S, Heinicke J, Dannenberg C, et al. In Vivo [125I]-Iodobenzovesamicol binding reflects cortical cholinergic deficiency induced by specific immunolesion of rat basal forebrain cholinergic system. Nucl Med Biol. 2000;27:23–31.CrossRefPubMed Sorger D, Schliebs R, Kampfer I, Rossner S, Heinicke J, Dannenberg C, et al. In Vivo [125I]-Iodobenzovesamicol binding reflects cortical cholinergic deficiency induced by specific immunolesion of rat basal forebrain cholinergic system. Nucl Med Biol. 2000;27:23–31.CrossRefPubMed
17.
go back to reference Shiba K, Mori H, Tonami N. Evaluation of radioiodinated (−)-o-iodovesamicol as a radiotracer for mapping the vesicular acetylcholine transporter. Ann Nucl Med. 2003;17(6):451–6.CrossRefPubMed Shiba K, Mori H, Tonami N. Evaluation of radioiodinated (−)-o-iodovesamicol as a radiotracer for mapping the vesicular acetylcholine transporter. Ann Nucl Med. 2003;17(6):451–6.CrossRefPubMed
18.
go back to reference Shiba K, Nishiyama S, Tsukada H, Ishiwata K, Kawamura K, Ogawa K, et al. The potential of (−)-o-[11C]methylvesamicol for diagnosing cholinergic deficit dementia. Synapse. 2009;63(2):167–71.CrossRefPubMed Shiba K, Nishiyama S, Tsukada H, Ishiwata K, Kawamura K, Ogawa K, et al. The potential of (−)-o-[11C]methylvesamicol for diagnosing cholinergic deficit dementia. Synapse. 2009;63(2):167–71.CrossRefPubMed
19.
go back to reference Efange SM, Mach RH, Smith CR, Khare AB, Foulon C, Akella SK, et al. Vesamicol analogues as sigma ligands: molecular determinants of selectivity at the vesamicol receptor. Biochem Pharmacol. 1995;49:791–7.CrossRefPubMed Efange SM, Mach RH, Smith CR, Khare AB, Foulon C, Akella SK, et al. Vesamicol analogues as sigma ligands: molecular determinants of selectivity at the vesamicol receptor. Biochem Pharmacol. 1995;49:791–7.CrossRefPubMed
20.
go back to reference Rogers GA, Parsons SM, Anderson DC, Nilsson LM, Bahr BA, Kornreich WD, et al. Synthesis, in vitro acetylcholine- storage- blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidineo) cyclohexanol (Vesamicol). J Med Chem. 1989;32:1217–30.CrossRefPubMed Rogers GA, Parsons SM, Anderson DC, Nilsson LM, Bahr BA, Kornreich WD, et al. Synthesis, in vitro acetylcholine- storage- blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidineo) cyclohexanol (Vesamicol). J Med Chem. 1989;32:1217–30.CrossRefPubMed
21.
go back to reference Kozaka T, Uno I, Kitamura Y, Miwa D, Ogawa K, Shiba K. Syntheses and in vitro evaluation of decalinvesamicol analogues as potential imaging probes for vesicular acetylcholine transporter (VAChT). Bioorg Med Chem. 2012;20(16):4936–41.CrossRefPubMed Kozaka T, Uno I, Kitamura Y, Miwa D, Ogawa K, Shiba K. Syntheses and in vitro evaluation of decalinvesamicol analogues as potential imaging probes for vesicular acetylcholine transporter (VAChT). Bioorg Med Chem. 2012;20(16):4936–41.CrossRefPubMed
22.
go back to reference Kozaka T, Uno I, Kitamura Y, Miwa D, Azim MA, Ogawa K, et al. Regional brain imaging of vesicular acetylcholine transporter (VAChT) using o-[125I]iodo-trans-decalinvesamicol as a new potential imaging probe. Synapse. 2014;68(3):107–13.CrossRefPubMed Kozaka T, Uno I, Kitamura Y, Miwa D, Azim MA, Ogawa K, et al. Regional brain imaging of vesicular acetylcholine transporter (VAChT) using o-[125I]iodo-trans-decalinvesamicol as a new potential imaging probe. Synapse. 2014;68(3):107–13.CrossRefPubMed
23.
go back to reference Azim MA, Kozaka T, Uno I, Miwa D, Kitamura Y, Ogawa K, et al. The potential of the vesicular acetylcholine transporter (VAChT) Imaging Using Radiolabeled o-Bromo-trans-decalinvesamicol (OBDV) as a New PET Ligand. Synapse. 2014;68:445–53.CrossRefPubMed Azim MA, Kozaka T, Uno I, Miwa D, Kitamura Y, Ogawa K, et al. The potential of the vesicular acetylcholine transporter (VAChT) Imaging Using Radiolabeled o-Bromo-trans-decalinvesamicol (OBDV) as a New PET Ligand. Synapse. 2014;68:445–53.CrossRefPubMed
24.
go back to reference Kawamura K, Shiba K, Tsukada H, Nishimura S, Mori H, Ishiwata K. Synthesis and evaluation of vesamicol analog (−)-o-[11C]methylvesamicol as a PET ligand for vasicular acetylcholine transporter. Annal. Nucl. Med. 2006;20(6):417–24.CrossRef Kawamura K, Shiba K, Tsukada H, Nishimura S, Mori H, Ishiwata K. Synthesis and evaluation of vesamicol analog (−)-o-[11C]methylvesamicol as a PET ligand for vasicular acetylcholine transporter. Annal. Nucl. Med. 2006;20(6):417–24.CrossRef
25.
go back to reference Shiba K, Yano T, Sato W, Mori H, Tonami N. Characterization of radioiodinated (−)-ortho-iodovesamicol binding in rat brain preparations. Life Sci. 2002;71(13):1591–8.CrossRefPubMed Shiba K, Yano T, Sato W, Mori H, Tonami N. Characterization of radioiodinated (−)-ortho-iodovesamicol binding in rat brain preparations. Life Sci. 2002;71(13):1591–8.CrossRefPubMed
26.
go back to reference Samuelsson L, Långström B. Synthesis of 1-(2′-deoxy-2′-fluoro- β-D-arabinofuranosyl)-[methyl-11C]thimine ([11C]FMAU) via a still cross-coupling reaction with [11C]methyl iodide. J Label Compd Radiopharm. 2003;46:263–72.CrossRef Samuelsson L, Långström B. Synthesis of 1-(2′-deoxy-2′-fluoro- β-D-arabinofuranosyl)-[methyl-11C]thimine ([11C]FMAU) via a still cross-coupling reaction with [11C]methyl iodide. J Label Compd Radiopharm. 2003;46:263–72.CrossRef
27.
go back to reference Frey KA, Wieland DM, Kilbourn MR. Imaging of monoaminergic and cholinergic vesicular transporters in the brain. Adv Pharmacol. 1998;42:269–72.CrossRefPubMed Frey KA, Wieland DM, Kilbourn MR. Imaging of monoaminergic and cholinergic vesicular transporters in the brain. Adv Pharmacol. 1998;42:269–72.CrossRefPubMed
28.
go back to reference Efange SM. In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter. FASEB J. 2000;14:2401–13.CrossRefPubMed Efange SM. In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter. FASEB J. 2000;14:2401–13.CrossRefPubMed
29.
go back to reference Mash DC, Zabetian CP. Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse. 1992;12:195–205.CrossRefPubMed Mash DC, Zabetian CP. Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse. 1992;12:195–205.CrossRefPubMed
30.
go back to reference David A, McCormick. 1989, Acetylcholine: distribution, receptors, and actions. Section of Neuroanatomy, Yale Univrersity of School of Medicine. 333 Cedar Street, New Haven, CT 06510, USA. David A, McCormick. 1989, Acetylcholine: distribution, receptors, and actions. Section of Neuroanatomy, Yale Univrersity of School of Medicine. 333 Cedar Street, New Haven, CT 06510, USA.
31.
go back to reference Quirion R, Aubert I, Araujo DM, Hersi A, Gaudreau P. Autoradiographic distribution of putative muscarinic receptor sub-types in mammalian brain. Prog Brain Res. 1993;98:85–93.CrossRefPubMed Quirion R, Aubert I, Araujo DM, Hersi A, Gaudreau P. Autoradiographic distribution of putative muscarinic receptor sub-types in mammalian brain. Prog Brain Res. 1993;98:85–93.CrossRefPubMed
32.
go back to reference Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. The Journal of Neuroscience. 1991;11(10):3218–26.PubMed Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. The Journal of Neuroscience. 1991;11(10):3218–26.PubMed
33.
go back to reference Vilaro MT, Mengod G, Palacios JM. Advances and limitations of the molecular neuroanatomy of cholinergic receptors: the example of multiple muscarinic receptors. Prog Brain Res. 1993;98:95–101.CrossRefPubMed Vilaro MT, Mengod G, Palacios JM. Advances and limitations of the molecular neuroanatomy of cholinergic receptors: the example of multiple muscarinic receptors. Prog Brain Res. 1993;98:95–101.CrossRefPubMed
34.
go back to reference Rotter A, Jacobwitz DM. Neurochemical identification of cholinergic forebrain projection sites of the nucleus tegmentalis dorsalis lateralis. Brain Res Bull. 1981;6:525–9.CrossRefPubMed Rotter A, Jacobwitz DM. Neurochemical identification of cholinergic forebrain projection sites of the nucleus tegmentalis dorsalis lateralis. Brain Res Bull. 1981;6:525–9.CrossRefPubMed
35.
go back to reference Jung YW, Van Dort ME, Gildersleeve DL, Wieland DM. A radiotracer for mapping cholinergic neurons of the brain. J Med Chem. 1990;33:2065–8.CrossRefPubMed Jung YW, Van Dort ME, Gildersleeve DL, Wieland DM. A radiotracer for mapping cholinergic neurons of the brain. J Med Chem. 1990;33:2065–8.CrossRefPubMed
36.
go back to reference Altar CA, Marien MR. [3H]vesamicol binding in brain: autoradiographic distribution, pharmacology, and effects of cholinergic lesions. Synapse. 1988;2(5):486–93.CrossRefPubMed Altar CA, Marien MR. [3H]vesamicol binding in brain: autoradiographic distribution, pharmacology, and effects of cholinergic lesions. Synapse. 1988;2(5):486–93.CrossRefPubMed
37.
go back to reference Weissman AD, Su T-P, Hedreen JC, London ED. Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther. 1988;247(1):29–33.PubMed Weissman AD, Su T-P, Hedreen JC, London ED. Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther. 1988;247(1):29–33.PubMed
38.
go back to reference Waterhouse RN, Mardon K, O’Brien JC. Synthesis and Preliminary Evaluation of [123I]1-(4-Cyanobenzyl)-4-[[(trans-iodopropen-2-yl)oxy]-methyl]piperidine: a novel high affinity sigma receptor radioligand for SPECT. Nucl Med Biol. 1997;24:45–51.CrossRefPubMed Waterhouse RN, Mardon K, O’Brien JC. Synthesis and Preliminary Evaluation of [123I]1-(4-Cyanobenzyl)-4-[[(trans-iodopropen-2-yl)oxy]-methyl]piperidine: a novel high affinity sigma receptor radioligand for SPECT. Nucl Med Biol. 1997;24:45–51.CrossRefPubMed
39.
go back to reference Kawamura K, Ishiwata K, Tajima H, Ishii S. In vivo evaluation of [11C]SA4503 as a PET Ligand for mapping CNS sigma1 receptor. Nucl Med Biol. 2000;27:255–61.CrossRefPubMed Kawamura K, Ishiwata K, Tajima H, Ishii S. In vivo evaluation of [11C]SA4503 as a PET Ligand for mapping CNS sigma1 receptor. Nucl Med Biol. 2000;27:255–61.CrossRefPubMed
40.
go back to reference Butcher LL, Oh JD, Woolf NJ. Cholinergic neurons identified by in situ hybridization histochemistry. Prog Brain Res. 1993;98:1–8.CrossRefPubMed Butcher LL, Oh JD, Woolf NJ. Cholinergic neurons identified by in situ hybridization histochemistry. Prog Brain Res. 1993;98:1–8.CrossRefPubMed
41.
go back to reference Woolf NJ, Eckenstein F, Butcher LL. Cholinergic projections from the basal forebrain to the frontal cortex: a combined fluorescent tracer and immunohistochemical analysis. Neurosci Lett. 1983;40:93–8.CrossRefPubMed Woolf NJ, Eckenstein F, Butcher LL. Cholinergic projections from the basal forebrain to the frontal cortex: a combined fluorescent tracer and immunohistochemical analysis. Neurosci Lett. 1983;40:93–8.CrossRefPubMed
42.
go back to reference Woolf NJ, Butcher LL. Cholinergic system in the rat brain: III. Projection from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull. 1986;16:603–37.CrossRefPubMed Woolf NJ, Butcher LL. Cholinergic system in the rat brain: III. Projection from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull. 1986;16:603–37.CrossRefPubMed
Metadata
Title
Synthesis and evaluation of a new vesamicol analog o-[11C]methyl-trans-decalinvesamicol as a PET ligand for the vesicular acetylcholine transporter
Authors
Yoji Kitamura
Takashi Kozaka
Daisuke Miwa
Izumi Uno
Mohammad Anwar-ul Azim
Kazuma Ogawa
Junichi Taki
Seigo Kinuya
Kazuhiro Shiba
Publication date
01-02-2016
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 2/2016
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-015-1039-6

Other articles of this Issue 2/2016

Annals of Nuclear Medicine 2/2016 Go to the issue

Acknowledgements to Reviewers

Acknowledgements to reviewers