Skip to main content
Top
Published in: Brain Structure and Function 4/2016

01-05-2016 | Original Article

Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study

Authors: D. Kim, P. Samarth, F. Feng, D. Pare, Satish S. Nair

Published in: Brain Structure and Function | Issue 4/2016

Login to get access

Abstract

Competitive synaptic interactions between principal neurons (PNs) with differing intrinsic excitability were recently shown to determine which dorsal lateral amygdala (LAd) neurons are recruited into a fear memory trace. Here, we explored the contribution of these competitive interactions in determining the stimulus specificity of conditioned fear associations. To this end, we used a realistic biophysical computational model of LAd that included multi-compartment conductance-based models of 800 PNs and 200 interneurons. To reproduce the continuum of spike frequency adaptation displayed by PNs, the model included three subtypes of PNs with high, intermediate, and low spike frequency adaptation. In addition, the model network integrated spatially differentiated patterns of excitatory and inhibitory connections within LA, dopaminergic and noradrenergic inputs, extrinsic thalamic and cortical tone afferents to simulate conditioned stimuli as well as shock inputs for the unconditioned stimulus. Last, glutamatergic synapses in the model could undergo activity-dependent plasticity. Our results suggest that plasticity at both excitatory (PN–PN) and di-synaptic inhibitory (PN–ITN and, particularly, ITN–PN) connections are major determinants of the synaptic competition governing the assignment of PNs to the memory trace. The model also revealed that training-induced potentiation of PN–PN synapses promotes, whereas that of ITN–PN synapses opposes, stimulus generalization. Indeed, suppressing plasticity of PN–PN synapses increased, whereas preventing plasticity of interneuronal synapses decreased the CS specificity of PN recruitment. Overall, our results indicate that the plasticity configuration imprinted in the network by synaptic competition ensures memory specificity. Given that anxiety disorders are characterized by tendency to generalize learned fear to safe stimuli or situations, understanding how plasticity of intrinsic LAd synapses regulates the specificity of learned fear is an important challenge for future experimental studies.
Appendix
Available only for authorised users
Literature
go back to reference Armony JL, Servan-Schreiber D, Romanski LM, Cohen JD, LeDoux JE (1997) Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb Cortex 7:157–165CrossRefPubMed Armony JL, Servan-Schreiber D, Romanski LM, Cohen JD, LeDoux JE (1997) Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb Cortex 7:157–165CrossRefPubMed
go back to reference Balkenius C, Moren J (2001) Emotional learning: a computational model of the amygdala. Cybernet Syst 32:611–636CrossRef Balkenius C, Moren J (2001) Emotional learning: a computational model of the amygdala. Cybernet Syst 32:611–636CrossRef
go back to reference Ball JM, Hummos AM, Nair SS (2012) Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning: a computational study. Neurosci 224:249–267CrossRef Ball JM, Hummos AM, Nair SS (2012) Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning: a computational study. Neurosci 224:249–267CrossRef
go back to reference Bauer EP, LeDoux JE (2004) Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J Neurosci 24:9507–9512CrossRefPubMed Bauer EP, LeDoux JE (2004) Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J Neurosci 24:9507–9512CrossRefPubMed
go back to reference Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240CrossRefPubMed Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240CrossRefPubMed
go back to reference Bissiere S, Humeau Y, Luthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6:587–592CrossRefPubMed Bissiere S, Humeau Y, Luthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6:587–592CrossRefPubMed
go back to reference Bordi F, LeDoux JE (1994) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286CrossRefPubMed Bordi F, LeDoux JE (1994) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286CrossRefPubMed
go back to reference Byrne JH, Roberts JL (ed) (2004) From molecules to networks—an introduction to cellular and molecular neuroscience. Elsevier, San Diego Byrne JH, Roberts JL (ed) (2004) From molecules to networks—an introduction to cellular and molecular neuroscience. Elsevier, San Diego
go back to reference Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, CambridgeCrossRef Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, CambridgeCrossRef
go back to reference Collins DR, Paré D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn Mem 7:97–103CrossRefPubMedPubMedCentral Collins DR, Paré D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn Mem 7:97–103CrossRefPubMedPubMedCentral
go back to reference Domjan M (2006) The principles of learning and behavior: active learning edition, 5th edn. Thomson, Wadsworth, Belmont Domjan M (2006) The principles of learning and behavior: active learning edition, 5th edn. Thomson, Wadsworth, Belmont
go back to reference Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750PubMed Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750PubMed
go back to reference Duvarci S, Bauer EP, Pare D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29:10357–10361CrossRefPubMedPubMedCentral Duvarci S, Bauer EP, Pare D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29:10357–10361CrossRefPubMedPubMedCentral
go back to reference Faber ES, Sah P (2003) Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552:483–497CrossRefPubMedPubMedCentral Faber ES, Sah P (2003) Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552:483–497CrossRefPubMedPubMedCentral
go back to reference Faber ES, Callister RJ, Sah P (2001) Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J Neurophysiol 85:714–723PubMed Faber ES, Callister RJ, Sah P (2001) Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J Neurophysiol 85:714–723PubMed
go back to reference Farb C, Chang W, LeDoux JE (2010) Ultrastructural characterization of noradrenergic axons and beta-adrenergic receptors in the lateral nucleus of the amygdale. Front Behav Neurosci 4:162CrossRefPubMedPubMedCentral Farb C, Chang W, LeDoux JE (2010) Ultrastructural characterization of noradrenergic axons and beta-adrenergic receptors in the lateral nucleus of the amygdale. Front Behav Neurosci 4:162CrossRefPubMedPubMedCentral
go back to reference Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570CrossRefPubMed Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570CrossRefPubMed
go back to reference Gaudreau H, Paré D (1996) Projection neurons of the lateral amygdaloid nucleus are virtually silent throughout the sleep-walking cycle. J Neurophysiol 75:1301–1305PubMed Gaudreau H, Paré D (1996) Projection neurons of the lateral amygdaloid nucleus are virtually silent throughout the sleep-walking cycle. J Neurophysiol 75:1301–1305PubMed
go back to reference Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40:1013–1022CrossRefPubMed Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40:1013–1022CrossRefPubMed
go back to reference Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowshi JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460CrossRefPubMed Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowshi JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460CrossRefPubMed
go back to reference Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA (2009) Selective erasure of a fear memory. Science 323:1492–1496CrossRefPubMed Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA (2009) Selective erasure of a fear memory. Science 323:1492–1496CrossRefPubMed
go back to reference Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606CrossRefPubMed Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606CrossRefPubMed
go back to reference Honig WK, Urcuioli PJ (1981) The legacy of Guttman and Kalish (1956): 25 years of research on stimulus generalization. J Exp Anal Behav 36:405–445CrossRefPubMedPubMedCentral Honig WK, Urcuioli PJ (1981) The legacy of Guttman and Kalish (1956): 25 years of research on stimulus generalization. J Exp Anal Behav 36:405–445CrossRefPubMedPubMedCentral
go back to reference Hu H, Real E, Takamiya K, Kang M, LeDoux J, Huganir R, Malinow R (2007) Emotion enhances learning via norepinephrine regulation of AMPA receptor trafficking. Cell 131:160–173CrossRefPubMed Hu H, Real E, Takamiya K, Kang M, LeDoux J, Huganir R, Malinow R (2007) Emotion enhances learning via norepinephrine regulation of AMPA receptor trafficking. Cell 131:160–173CrossRefPubMed
go back to reference Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430–1448CrossRefPubMed Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430–1448CrossRefPubMed
go back to reference Johnson LR, Hou M, Prager EM, LeDoux JE (2011) Regulation of the fear network by mediators of stress: norepinephrine alters the balance between cortical and subcortical afferent excitation of the lateral amygdala. Front Behav Neurosci 5:23CrossRefPubMedPubMedCentral Johnson LR, Hou M, Prager EM, LeDoux JE (2011) Regulation of the fear network by mediators of stress: norepinephrine alters the balance between cortical and subcortical afferent excitation of the lateral amygdala. Front Behav Neurosci 5:23CrossRefPubMedPubMedCentral
go back to reference Kim D, Pare D, Nair SS (2013a) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421–430CrossRefPubMedPubMedCentral Kim D, Pare D, Nair SS (2013a) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421–430CrossRefPubMedPubMedCentral
go back to reference Kim D, Pare D, Nair SS (2013b) Assignment of lateral amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J Neurosci 33(36):14354–14358CrossRefPubMedPubMedCentral Kim D, Pare D, Nair SS (2013b) Assignment of lateral amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J Neurosci 33(36):14354–14358CrossRefPubMedPubMedCentral
go back to reference Kitajima T, Hara K (1997) An integrated model for activity-dependent synaptic modifications. Neural Networks 10:413–421CrossRef Kitajima T, Hara K (1997) An integrated model for activity-dependent synaptic modifications. Neural Networks 10:413–421CrossRef
go back to reference Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16:6342–6352PubMed Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16:6342–6352PubMed
go back to reference Kroner S, Rosenkranz JA, Grace AA, Barrionuevo G (2004) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610CrossRefPubMed Kroner S, Rosenkranz JA, Grace AA, Barrionuevo G (2004) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610CrossRefPubMed
go back to reference Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–335CrossRefPubMed Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–335CrossRefPubMed
go back to reference Li G, Nair S, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101:1629–1646CrossRefPubMedPubMedCentral Li G, Nair S, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101:1629–1646CrossRefPubMedPubMedCentral
go back to reference Lissek S, Biggs AL, Rabin SJ, Cornwell BR, Alvarez RP, Pine DS, Grillon C (2008) Generalization of conditioned fear-potentiated startle in humans: experimental validation and clinical relevance. Behav Res Ther 46:678–687CrossRefPubMedPubMedCentral Lissek S, Biggs AL, Rabin SJ, Cornwell BR, Alvarez RP, Pine DS, Grillon C (2008) Generalization of conditioned fear-potentiated startle in humans: experimental validation and clinical relevance. Behav Res Ther 46:678–687CrossRefPubMedPubMedCentral
go back to reference Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2010) Over generalization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167:47–55CrossRefPubMedPubMedCentral Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2010) Over generalization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167:47–55CrossRefPubMedPubMedCentral
go back to reference Loretan K, Bissiere S, Luthi A (2004) Dopaminergic modulation of spontaneous inhibitory network activity in the lateral amygdale. Neuropharmacology 47:631–639CrossRefPubMed Loretan K, Bissiere S, Luthi A (2004) Dopaminergic modulation of spontaneous inhibitory network activity in the lateral amygdale. Neuropharmacology 47:631–639CrossRefPubMed
go back to reference Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683–687CrossRefPubMed Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683–687CrossRefPubMed
go back to reference Maren S, Yap SA, Goosens KA (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21:RC135PubMed Maren S, Yap SA, Goosens KA (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21:RC135PubMed
go back to reference Martina M, Bergeron R (2008) D1 and D4 dopaminergic receptor interplay mediates coincident G protein-independent and dependent regulation of glutamate NMDA receptors in the lateral amygdala. J Neurochem 106:2421–2435CrossRefPubMed Martina M, Bergeron R (2008) D1 and D4 dopaminergic receptor interplay mediates coincident G protein-independent and dependent regulation of glutamate NMDA receptors in the lateral amygdala. J Neurochem 106:2421–2435CrossRefPubMed
go back to reference Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43CrossRefPubMed Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43CrossRefPubMed
go back to reference Muller JF, Mascagni F, McDonald AJ (2009) Dopaminergic innervation of pyramidal cells in the rat basolateral amygdala. Brain Struct Funct 213:275–288CrossRefPubMed Muller JF, Mascagni F, McDonald AJ (2009) Dopaminergic innervation of pyramidal cells in the rat basolateral amygdala. Brain Struct Funct 213:275–288CrossRefPubMed
go back to reference Pape HC, Paré D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463CrossRefPubMedPubMedCentral Pape HC, Paré D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463CrossRefPubMedPubMedCentral
go back to reference Polepalli JS, Sullivan RK, Yanagawa Y, Sah P (2010) A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala. J Neurosci 30:14619–14629CrossRefPubMed Polepalli JS, Sullivan RK, Yanagawa Y, Sah P (2010) A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala. J Neurosci 30:14619–14629CrossRefPubMed
go back to reference Power JM, Bocklisch C, Curby P, Sah P (2011) Location and function of the slow after hyperpolarization channels in the basolateral amygdala. J Neurosci 31:526–537CrossRefPubMed Power JM, Bocklisch C, Curby P, Sah P (2011) Location and function of the slow after hyperpolarization channels in the basolateral amygdala. J Neurosci 31:526–537CrossRefPubMed
go back to reference Quirk GJ, Repa JC, LeDoux JE (1995) Fear conditioning enhances short latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029–1039CrossRefPubMed Quirk GJ, Repa JC, LeDoux JE (1995) Fear conditioning enhances short latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029–1039CrossRefPubMed
go back to reference Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4:724–731CrossRefPubMed Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4:724–731CrossRefPubMed
go back to reference Resnik J, Sobel N, Paz R (2011) Auditory aversive learning increases discrimination thresholds. Nat Neurosci 14(6):791–796CrossRefPubMed Resnik J, Sobel N, Paz R (2011) Auditory aversive learning increases discrimination thresholds. Nat Neurosci 14(6):791–796CrossRefPubMed
go back to reference Sah P, Faber ES, Lopez de Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834CrossRefPubMed Sah P, Faber ES, Lopez de Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834CrossRefPubMed
go back to reference Samson RD, Paré D (2006) A spatially structured network of inhibitory and excitatory connections directs impulse traffic within the lateral amygdala. Neuroscience 141:1599–1609CrossRefPubMed Samson RD, Paré D (2006) A spatially structured network of inhibitory and excitatory connections directs impulse traffic within the lateral amygdala. Neuroscience 141:1599–1609CrossRefPubMed
go back to reference Sara SJ (2009) The Locus coeruleus and noradrenergic modulation of cognition. Nat Neurosci Rev 10:211–223CrossRef Sara SJ (2009) The Locus coeruleus and noradrenergic modulation of cognition. Nat Neurosci Rev 10:211–223CrossRef
go back to reference Schechtman E, Laufer O, Paz R (2010) Reinforcement affects stimulus generalization. J Neurosci 30(31):10460–10464CrossRefPubMed Schechtman E, Laufer O, Paz R (2010) Reinforcement affects stimulus generalization. J Neurosci 30(31):10460–10464CrossRefPubMed
go back to reference Shouval HZ, Bear MF, Cooper LN (2002a) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Aca Sci USA 99:10831–10836CrossRef Shouval HZ, Bear MF, Cooper LN (2002a) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Aca Sci USA 99:10831–10836CrossRef
go back to reference Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN (2002b) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern 87:383–391CrossRefPubMed Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN (2002b) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern 87:383–391CrossRefPubMed
go back to reference Sigurdsson T, Doyere V, Cain CK, Ledoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227CrossRefPubMed Sigurdsson T, Doyere V, Cain CK, Ledoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227CrossRefPubMed
go back to reference Spampanato J, Polepalli J, Sah P (2011) Interneurons in the basolateral amygdala. Neuropharmacol 60:765–773CrossRef Spampanato J, Polepalli J, Sah P (2011) Interneurons in the basolateral amygdala. Neuropharmacol 60:765–773CrossRef
go back to reference Szinyei C, Heinbockel T, Montagne J, Pape HC (2000) Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J Neurosci 20:8909–8915PubMed Szinyei C, Heinbockel T, Montagne J, Pape HC (2000) Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J Neurosci 20:8909–8915PubMed
go back to reference Tuunanen J, Pitkanen A (2000) Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res 39:171–176CrossRefPubMed Tuunanen J, Pitkanen A (2000) Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res 39:171–176CrossRefPubMed
go back to reference Varela J, Sen K, Gibson J, Fost J, Abbott L, Nelson S (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926–7940PubMed Varela J, Sen K, Gibson J, Fost J, Abbott L, Nelson S (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926–7940PubMed
go back to reference Viosca J, Lopez de Armentia M, Jancic D, Barco A (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn Mem 16:193–197CrossRefPubMed Viosca J, Lopez de Armentia M, Jancic D, Barco A (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn Mem 16:193–197CrossRefPubMed
go back to reference Vlachos I, Herry C, Luthi A, Aertsen A, Kumar A (2011) Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala. PLoS Comput Biol 7:e1001104CrossRefPubMedPubMedCentral Vlachos I, Herry C, Luthi A, Aertsen A, Kumar A (2011) Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala. PLoS Comput Biol 7:e1001104CrossRefPubMedPubMedCentral
go back to reference Warman EN, Durand DM, Yuen GLF (1994) Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. J Neurophysiol 71:2033–2045PubMed Warman EN, Durand DM, Yuen GLF (1994) Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. J Neurophysiol 71:2033–2045PubMed
go back to reference Washburn MS, Moises HC (1992) Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J Neurosci 12:4066–4079PubMed Washburn MS, Moises HC (1992) Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J Neurosci 12:4066–4079PubMed
go back to reference Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi R, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443CrossRefPubMedPubMedCentral Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi R, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443CrossRefPubMedPubMedCentral
Metadata
Title
Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study
Authors
D. Kim
P. Samarth
F. Feng
D. Pare
Satish S. Nair
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1037-4

Other articles of this Issue 4/2016

Brain Structure and Function 4/2016 Go to the issue