Skip to main content
Top
Published in: Familial Cancer 3/2010

01-09-2010

Survey of familial glioma and role of germline p16 INK4A /p14 ARF and p53 mutation

Authors: Lindsay B. Robertson, Georgina N. Armstrong, Bianca D. Olver, Amy L. Lloyd, Sanjay Shete, Ching Lau, Elizabeth B. Claus, Jill Barnholtz-Sloan, Rose Lai, Dora Il’yasova, Joellen Schildkraut, Jonine L. Bernstein, Sara H. Olson, Robert B. Jenkins, Ping Yang, Amanda L. Rynerason, Margaret Wrensch, Lucie McCoy, John K. Wienkce, Bridget McCarthy, Faith Davis, Nicholas A. Vick, Christoffer Johansen, Hanne Bødtcher, Siegal Sadetzki, Revital Bar-Sade Bruchim, Galit Hirsh Yechezkel, Ulrika Andersson, Beatrice S. Melin, Melissa L. Bondy, Richard S. Houlston

Published in: Familial Cancer | Issue 3/2010

Login to get access

Abstract

There is increasing recognition of familial propensity to glioma as a distinct clinical entity beyond a few rare syndromes; however its genetic basis is poorly understood. The role of p16 INK4A /p14 ARF and p53 mutations in sporadic glioma provides a strong rationale for investigating germline mutations in these genes as a cause of familial glioma. To survey the familial glioma phenotype and examine the contribution of germline mutation in p16 INK4A /p14 ARF and p53 to the disease we have analyzed a series of 101 index familial cases collected through the GLIOGENE Consortium (http://​braintumor.​epigenetic.​org/​). There was little evidence for within family correlations for tumour histology, suggesting generic susceptibility to glial tumors. We did not detect any functional mutations in p16 INK4A or p14 ARF . One index case with glioblastoma multiforme (GBM) diagnosed at age 54 and had a family history comprised of a paternal aunt with GBM at age 55, carried the p53 R158H mutation, which is predicted to be functional and has previously been implicated as a cause of Li-Fraumeni syndrome. Our findings provide no evidence that p16 INK4A /p14 ARF and p53 mutations contribute significantly to familial glioma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bondy ML et al (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(7):1953–1968CrossRefPubMed Bondy ML et al (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(7):1953–1968CrossRefPubMed
2.
go back to reference Hemminki K et al (2009) Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. Lancet Oncol 10(5):481–488CrossRefPubMed Hemminki K et al (2009) Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. Lancet Oncol 10(5):481–488CrossRefPubMed
3.
go back to reference Kyritsis AP et al (1994) Germline p53 gene mutations in subsets of glioma patients. J Natl Cancer Inst 86(5):344–349CrossRefPubMed Kyritsis AP et al (1994) Germline p53 gene mutations in subsets of glioma patients. J Natl Cancer Inst 86(5):344–349CrossRefPubMed
4.
go back to reference Li YJ et al (1995) Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer 64(6):383–387CrossRefPubMed Li YJ et al (1995) Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer 64(6):383–387CrossRefPubMed
5.
go back to reference Tachibana I et al (2000) Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4 alterations in familial glioma. Am J Med Genet 92(2):136–141CrossRefPubMed Tachibana I et al (2000) Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4 alterations in familial glioma. Am J Med Genet 92(2):136–141CrossRefPubMed
6.
go back to reference Gao L et al (1997) Lack of germ-line mutations of CDK4, p16(INK4A), and p15(INK4B) in families with glioma. Clin Cancer Res 3(6):977–981PubMed Gao L et al (1997) Lack of germ-line mutations of CDK4, p16(INK4A), and p15(INK4B) in families with glioma. Clin Cancer Res 3(6):977–981PubMed
7.
go back to reference Paunu N et al (2001) Analysis of p53 tumor suppressor gene in families with multiple glioma patients. J Neurooncol 55(3):159–165CrossRefPubMed Paunu N et al (2001) Analysis of p53 tumor suppressor gene in families with multiple glioma patients. J Neurooncol 55(3):159–165CrossRefPubMed
8.
go back to reference Malmer B et al (2001) Microsatellite instability, PTEN and p53 germline mutations in glioma families. Acta Oncol 40(5):633–637CrossRefPubMed Malmer B et al (2001) Microsatellite instability, PTEN and p53 germline mutations in glioma families. Acta Oncol 40(5):633–637CrossRefPubMed
9.
go back to reference Malmer B et al (2007) GLIOGENE an international consortium to understand familial glioma. Cancer Epidemiol Biomarkers Prev 16(9):1730–1734CrossRefPubMed Malmer B et al (2007) GLIOGENE an international consortium to understand familial glioma. Cancer Epidemiol Biomarkers Prev 16(9):1730–1734CrossRefPubMed
11.
go back to reference Varley JM et al (1999) Are there low-penetrance TP53 Alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65(4):995–1006CrossRefPubMed Varley JM et al (1999) Are there low-penetrance TP53 Alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65(4):995–1006CrossRefPubMed
12.
go back to reference Randerson-Moor JA et al (2001) A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10(1):55–62CrossRefPubMed Randerson-Moor JA et al (2001) A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10(1):55–62CrossRefPubMed
13.
go back to reference Bahuau M et al (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 58(11):2298–2303PubMed Bahuau M et al (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 58(11):2298–2303PubMed
14.
go back to reference Scheurer ME et al (2007) Aggregation of cancer in first-degree relatives of patients with glioma. Cancer Epidemiol Biomarkers Prev 16(11):2491–2495CrossRefPubMed Scheurer ME et al (2007) Aggregation of cancer in first-degree relatives of patients with glioma. Cancer Epidemiol Biomarkers Prev 16(11):2491–2495CrossRefPubMed
15.
go back to reference Goldgar DE et al (1994) Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86(21):1600–1608CrossRefPubMed Goldgar DE et al (1994) Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86(21):1600–1608CrossRefPubMed
16.
go back to reference Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904CrossRefPubMed Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904CrossRefPubMed
17.
go back to reference Wrensch M et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908CrossRefPubMed Wrensch M et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908CrossRefPubMed
Metadata
Title
Survey of familial glioma and role of germline p16 INK4A /p14 ARF and p53 mutation
Authors
Lindsay B. Robertson
Georgina N. Armstrong
Bianca D. Olver
Amy L. Lloyd
Sanjay Shete
Ching Lau
Elizabeth B. Claus
Jill Barnholtz-Sloan
Rose Lai
Dora Il’yasova
Joellen Schildkraut
Jonine L. Bernstein
Sara H. Olson
Robert B. Jenkins
Ping Yang
Amanda L. Rynerason
Margaret Wrensch
Lucie McCoy
John K. Wienkce
Bridget McCarthy
Faith Davis
Nicholas A. Vick
Christoffer Johansen
Hanne Bødtcher
Siegal Sadetzki
Revital Bar-Sade Bruchim
Galit Hirsh Yechezkel
Ulrika Andersson
Beatrice S. Melin
Melissa L. Bondy
Richard S. Houlston
Publication date
01-09-2010
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 3/2010
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-010-9346-5

Other articles of this Issue 3/2010

Familial Cancer 3/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine