Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2015

Open Access 01-12-2015 | Methodology

Surgical management of moderate adolescent idiopathic scoliosis with ApiFix®: a short peri- apical fixation followed by post-operative curve reduction with exercises

Authors: Yizhar Floman, Gheorghe Burnei, Stefan Gavriliu, Yoram Anekstein, Sergiu Straticiuc, Miklos Tunyogi-Csapo, Yigal Mirovsky, Daniel Zarzycki, Tomasz Potaczek, Uri Arnin

Published in: Scoliosis and Spinal Disorders | Issue 1/2015

Login to get access

Abstract

Surgery in adolescent idiopathic scoliosis (AIS) is a major operative intervention where 10–12 vertebrae are instrumented and fused. A smaller motion preserving surgery would be more desirable for these otherwise healthy adolescents. The ApiFix® system is a novel less invasive short segment pedicle screw based instrumentation inserted around the apex of the main curve. The system has a ratchet mechanism that enables gradual postoperative device elongation and curve correction. The ratchet is activated by performing specific spinal exercises. The unique features of the device allow curve correction without fusion. The system which has a CE approval was employed in adolescents with main thoracic curves.
More than a dozen of ApiFix surgeries have been performed so far. The preoperative Cobb angle was 45° ± 8, and 25° ± 8 at final follow up. The following is a report on three adolescent females aged 13–16 years with curves between 43°-53° and Risser sign of 1–4 who underwent surgery with ApiFix®. Two pedicle screws were inserted around the curve apex and the ratchet based device with polyaxial ring connectors was attached to the screws. No fusion attempt was made. Operative time was around one hour. Two weeks after surgery the patients were instructed to perform Schroth like daily exercises with the aim of rod elongation and gradual curve correction. Patients were followed between 6 months to 2 years. Curves were reduced and maintained between 22- 33°. Patients were pain free and were able to perform their spinal exercises. Postoperative gradual elongation of the device was observed. No screw loosening or rod breakage were observed. No adding on or curve progression was seen.
Three factors may contribute to the ApiFix® success: polyaxial connections that prevent mechanical failure, gradual curve correction by spinal motion and spinal growth modulation. The ApiFix® system allows managing moderate AIS with a simple and minor surgical intervention. Recovery is rapid with negligible motion loss. It allows gradual and safe curve correction with high patient satisfaction. It may also serve as an internal brace for AIS.
Literature
1.
go back to reference Weinstein SL, Dolan LA, Cheng JCY, Danielson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRefPubMed Weinstein SL, Dolan LA, Cheng JCY, Danielson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371:1527–37.CrossRefPubMed
2.
go back to reference Richards BS, Bernstein RM, D’Amato CR, Thompson GH. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS committee on bracing and nonoperative management. Spine. 2005;30:2068–75.CrossRefPubMed Richards BS, Bernstein RM, D’Amato CR, Thompson GH. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS committee on bracing and nonoperative management. Spine. 2005;30:2068–75.CrossRefPubMed
4.
go back to reference Lenke LG, Betz RR, Briedwell KH, Harms J, Clements DH, Lowe TG. Spontaneous lumbar curve coronal correction after selective anterior or posterior thoracic fusion in adolescent idiopathic scoliosis. Spine. 1999;24:1663–72.CrossRefPubMed Lenke LG, Betz RR, Briedwell KH, Harms J, Clements DH, Lowe TG. Spontaneous lumbar curve coronal correction after selective anterior or posterior thoracic fusion in adolescent idiopathic scoliosis. Spine. 1999;24:1663–72.CrossRefPubMed
5.
go back to reference Larson N, Fletcher ND, Daniel C, Richards BS. Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine. 2012;37:833–9.CrossRefPubMed Larson N, Fletcher ND, Daniel C, Richards BS. Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine. 2012;37:833–9.CrossRefPubMed
6.
go back to reference Newton PO, Marks MC, Bastrom TP, Betz R, Clements D, Lonner B, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis. Spine. 2013;38:328–38.CrossRefPubMed Newton PO, Marks MC, Bastrom TP, Betz R, Clements D, Lonner B, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis. Spine. 2013;38:328–38.CrossRefPubMed
7.
go back to reference Izatt MT, Adam CJ, Labrom RD, Askin GA. The relationship between deformity correction and clinical outcomes after thoracoscopic scoliosis surgery: a prospective series of one hundred patients. Spine. 2010;35:E1577–85.CrossRefPubMed Izatt MT, Adam CJ, Labrom RD, Askin GA. The relationship between deformity correction and clinical outcomes after thoracoscopic scoliosis surgery: a prospective series of one hundred patients. Spine. 2010;35:E1577–85.CrossRefPubMed
8.
go back to reference Lubicky JP, Hanson JE, Riley EH, Spinal Deformity Study Group. Instrumentation constructs in pediatric patients undergoing deformity correction correlated with Scoliosis Research Society Scores. Spine. 2011;36:1692–700.CrossRefPubMed Lubicky JP, Hanson JE, Riley EH, Spinal Deformity Study Group. Instrumentation constructs in pediatric patients undergoing deformity correction correlated with Scoliosis Research Society Scores. Spine. 2011;36:1692–700.CrossRefPubMed
9.
go back to reference Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y. Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech. 2005;18:522–5.CrossRefPubMed Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y. Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech. 2005;18:522–5.CrossRefPubMed
10.
go back to reference Reames DL, Smith JS, Fu KM, Polly DW, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19360 cases of pediatric scoliosis. A review of the scoliosis research society morbidity and mortality data base. Spine. 2011;36:1484–91.CrossRefPubMed Reames DL, Smith JS, Fu KM, Polly DW, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19360 cases of pediatric scoliosis. A review of the scoliosis research society morbidity and mortality data base. Spine. 2011;36:1484–91.CrossRefPubMed
11.
go back to reference Betz RR, Ranade A, Samdani AF, Chafetz R, D’Andrea LP, Gaughan JP, et al. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine. 2010;35:169–76.CrossRefPubMed Betz RR, Ranade A, Samdani AF, Chafetz R, D’Andrea LP, Gaughan JP, et al. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine. 2010;35:169–76.CrossRefPubMed
12.
go back to reference Shapiro F, Sethna N. Blood loss in pediatric spine surgery. Euro Spine J. 2004;13(supll 1):S6–17. 26.CrossRef Shapiro F, Sethna N. Blood loss in pediatric spine surgery. Euro Spine J. 2004;13(supll 1):S6–17. 26.CrossRef
Metadata
Title
Surgical management of moderate adolescent idiopathic scoliosis with ApiFix®: a short peri- apical fixation followed by post-operative curve reduction with exercises
Authors
Yizhar Floman
Gheorghe Burnei
Stefan Gavriliu
Yoram Anekstein
Sergiu Straticiuc
Miklos Tunyogi-Csapo
Yigal Mirovsky
Daniel Zarzycki
Tomasz Potaczek
Uri Arnin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2015
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-015-0028-9

Other articles of this Issue 1/2015

Scoliosis and Spinal Disorders 1/2015 Go to the issue