Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 3/2017

Open Access 01-12-2017 | Research

Surface structure feature matching algorithm for cardiac motion estimation

Authors: Zhengrui Zhang, Xuan Yang, Cong Tan, Wei Guo, Guoliang Chen

Published in: BMC Medical Informatics and Decision Making | Special Issue 3/2017

Login to get access

Abstract

Background

Cardiac diseases represent the leading cause of sudden death worldwide. During the development of cardiac diseases, the left ventricle (LV) changes obviously in structure and function. LV motion estimation plays an important role for diagnosis and treatment of cardiac diseases. To estimate LV motion accurately for cine magnetic resonance (MR) cardiac images, we develop an algorithm by combining point set matching with surface structure features of myocardium.

Methods

The structure features of myocardial wall are described by estimating the normal directions of points locating on the myocardium contours using an approximation approach. The Gaussian mixture model (GMM) of structure features is used to represent LV structure feature distribution. A new cost function is defined to represent the differences between two Gaussian mixture models, which are the GMM of structure features and the GMM of positions of two point sets. To optimize the cost function, its gradient is derived to use the Quasi-Newton (QN). Furthermore, to resolve the dis-convergence issue of Quasi-Newton for high-dimensional parameter space, Stochastic Gradient Descent (SGD) is used and SGD gradient is derived. Finally, the new cost function is solved by optimization combining SGD with QN. With the closed form expression of gradient, this paper provided a computationally efficient registration algorithm.

Results

Three public datasets are employed to verify the performance of our algorithm, including cardiac MR image sequences acquired from 33 subjects, 14 inter-subject heart cases, and the data obtained in MICCAI 2009s 3D Segmentation Challenge for Clinical Applications. We compare our results with those of the other point set registration methods for LV motion estimation. The obtained results demonstrate that our algorithm shows inherent statistical robustness, due to the combination of SGD and Quasi-Newton optimization. Furthermore, our method is shown to outperform other point set matching methods in the registration accuracy.

Conclusions

We provide a novel effective algorithm for cardiac motion estimation by introducing LV surface structure feature to point set matching. A new cost function is defined to measure the discrepancy between GMMs of two point sets. The GMM of point positions and the GMM of surface structure descriptor are defined at the same time. Optimization by combining SGD and Quasi-Newton is performed to solve the cost function. We experimentally demonstrate that our algorithm shows improved registration accuracy, and is convergent when used in high-dimensional parameter space.
Literature
1.
go back to reference Dharmakumar R. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced ssfp imaging at 3.0t: Theory and experimental evaluation in canines. J Magn Reson Imag. 2008; 27(5):1037–45.CrossRef Dharmakumar R. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced ssfp imaging at 3.0t: Theory and experimental evaluation in canines. J Magn Reson Imag. 2008; 27(5):1037–45.CrossRef
2.
go back to reference Tavakoli V, Amini AA. A survey of shaped-based registration and segmentation techniques for cardiac images. Comp Vision Image Underst. 2013; 117(9):966–89.CrossRef Tavakoli V, Amini AA. A survey of shaped-based registration and segmentation techniques for cardiac images. Comp Vision Image Underst. 2013; 117(9):966–89.CrossRef
3.
go back to reference Wang H, Amini AA. Cardiac motion and deformation recovery from mri: a review. IEEE Trans Med Imaging. 2012; 31(2):487–503.CrossRefPubMed Wang H, Amini AA. Cardiac motion and deformation recovery from mri: a review. IEEE Trans Med Imaging. 2012; 31(2):487–503.CrossRefPubMed
4.
go back to reference Makela T, Clarysse P, Sipila O, Pauna N, Pham QC, Katila T, Magnin IE. A review of cardiac image registration methods. IEEE Trans Med Imaging. 2002; 21(9):1011–21.CrossRefPubMed Makela T, Clarysse P, Sipila O, Pauna N, Pham QC, Katila T, Magnin IE. A review of cardiac image registration methods. IEEE Trans Med Imaging. 2002; 21(9):1011–21.CrossRefPubMed
5.
go back to reference Ledesma-Carbayo MJ, Kybic J, Desco M, Santos A, Unser M. Cardiac motion analysis from ultrasound sequences using non-rigid registration. In: Medicae Computing and Computer-Assisted Intervention - Miccai 2001, International Conference, Utrecht, the Netherlands, October 14-17, 2001, Proceedings. Utrecht: Springer;2001. p. 889–96. Ledesma-Carbayo MJ, Kybic J, Desco M, Santos A, Unser M. Cardiac motion analysis from ultrasound sequences using non-rigid registration. In: Medicae Computing and Computer-Assisted Intervention - Miccai 2001, International Conference, Utrecht, the Netherlands, October 14-17, 2001, Proceedings. Utrecht: Springer;2001. p. 889–96.
6.
go back to reference Chandrashekara R, Mohiaddin R, Rueckert D. Cardiac motion tracking in tagged mr images using a 4d b-spline motion model and nonrigid image registration. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro. Arlington: IEEE;2004. p. 468–71. Chandrashekara R, Mohiaddin R, Rueckert D. Cardiac motion tracking in tagged mr images using a 4d b-spline motion model and nonrigid image registration. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro. Arlington: IEEE;2004. p. 468–71.
7.
go back to reference Chandrashekara R, Mohiaddin RH, Rueckert D. Analysis of 3-d myocardial motion in tagged mr images using nonrigid image registration. IEEE Trans Med Imaging. 2004; 23(10):1245–50.CrossRefPubMed Chandrashekara R, Mohiaddin RH, Rueckert D. Analysis of 3-d myocardial motion in tagged mr images using nonrigid image registration. IEEE Trans Med Imaging. 2004; 23(10):1245–50.CrossRefPubMed
8.
go back to reference Ebrahimi M, Kulaseharan S. Deformable image registration and intensity correction of cardiac perfusion mri. In: 5th International Workshop, STACOM 2014 Held in Conjunction with MICCAI 2014. Boston:2014. p. 13–20. Ebrahimi M, Kulaseharan S. Deformable image registration and intensity correction of cardiac perfusion mri. In: 5th International Workshop, STACOM 2014 Held in Conjunction with MICCAI 2014. Boston:2014. p. 13–20.
9.
go back to reference Oubel E, De Craene M, Hero A, Pourmorteza A, Huguet M, Avegliano G, Bijnens B, Frangi AF. Cardiac motion estimation by joint alignment of tagged mri sequences. Med Image Anal. 2012; 16(1):339–50.CrossRefPubMed Oubel E, De Craene M, Hero A, Pourmorteza A, Huguet M, Avegliano G, Bijnens B, Frangi AF. Cardiac motion estimation by joint alignment of tagged mri sequences. Med Image Anal. 2012; 16(1):339–50.CrossRefPubMed
10.
go back to reference Shi W, Zhuang X, Wang H, Duckett S, Luong DV, Tobon-Gomez C, Tung K, Edwards PJ, Rhode KS, Razavi RS, et al. A comprehensive cardiac motion estimation framework using both untagged and 3-d tagged mr images based on nonrigid registration. IEEE Trans Med Imaging. 2012; 31(6):1263–75.CrossRefPubMed Shi W, Zhuang X, Wang H, Duckett S, Luong DV, Tobon-Gomez C, Tung K, Edwards PJ, Rhode KS, Razavi RS, et al. A comprehensive cardiac motion estimation framework using both untagged and 3-d tagged mr images based on nonrigid registration. IEEE Trans Med Imaging. 2012; 31(6):1263–75.CrossRefPubMed
11.
go back to reference Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac mr images. IEEE Trans Med Imaging. 2013; 32(7):1302–15.CrossRefPubMed Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac mr images. IEEE Trans Med Imaging. 2013; 32(7):1302–15.CrossRefPubMed
12.
go back to reference Papademetris X, Sinusas AJ, Dione DP, Duncan JS. Estimation of 3d left ventricular deformation from echocardiography. Med Image Anal. 2001; 5(1):17–28.CrossRefPubMed Papademetris X, Sinusas AJ, Dione DP, Duncan JS. Estimation of 3d left ventricular deformation from echocardiography. Med Image Anal. 2001; 5(1):17–28.CrossRefPubMed
13.
go back to reference Escalanteramírez B, Moyaalbor E, Barbaj L, Cosio FA. Motion estimation and segmentation in ct cardiac images using the hermite transform and active shape models. Proc SPIE. 2013; 8856:219–24. Escalanteramírez B, Moyaalbor E, Barbaj L, Cosio FA. Motion estimation and segmentation in ct cardiac images using the hermite transform and active shape models. Proc SPIE. 2013; 8856:219–24.
14.
go back to reference Macan T, Loncaric S. 3d cardiac motion estimation by point-constrained optical flow algorithm. In: International Symposium on Image and Signal Processing and Analysis. Pula:2001. p. 255–9. Macan T, Loncaric S. 3d cardiac motion estimation by point-constrained optical flow algorithm. In: International Symposium on Image and Signal Processing and Analysis. Pula:2001. p. 255–9.
15.
go back to reference Shi P, Sinusas AJ, Constable RT, Ritman E, Duncan JS. Point-tracked quantitative analysis of left ventricular surface motion from 3-d image sequences. IEEE Trans Med Imaging. 2000; 19(1):36–50.CrossRefPubMed Shi P, Sinusas AJ, Constable RT, Ritman E, Duncan JS. Point-tracked quantitative analysis of left ventricular surface motion from 3-d image sequences. IEEE Trans Med Imaging. 2000; 19(1):36–50.CrossRefPubMed
16.
go back to reference Besl PJ, McKay ND. A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell. 1992; 14(2):239–56.CrossRef Besl PJ, McKay ND. A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell. 1992; 14(2):239–56.CrossRef
17.
go back to reference Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Comput Vis Image Underst. 2003; 89(2-3):114–41.CrossRef Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Comput Vis Image Underst. 2003; 89(2-3):114–41.CrossRef
18.
go back to reference Myronenko A, Song X. Point set registration: Coherent point drift. IEEE Trans Pattern Anal Mach Intell. 2010; 32(12):2262–75.CrossRefPubMed Myronenko A, Song X. Point set registration: Coherent point drift. IEEE Trans Pattern Anal Mach Intell. 2010; 32(12):2262–75.CrossRefPubMed
19.
go back to reference Jian B, Vemuri BC. Robust point set registration using gaussian mixture models. IEEE Trans Pattern Anal Mach Intell. 2011; 33(8):1633–45.CrossRefPubMed Jian B, Vemuri BC. Robust point set registration using gaussian mixture models. IEEE Trans Pattern Anal Mach Intell. 2011; 33(8):1633–45.CrossRefPubMed
20.
go back to reference Lin N, Duncan JS. Generalized robust point matching using an extended free-form deformation model: application to cardiac images. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro. Arlington: IEEE;2004. p. 320–3. Lin N, Duncan JS. Generalized robust point matching using an extended free-form deformation model: application to cardiac images. In: IEEE International Symposium on Biomedical Imaging: From Nano To Macro. Arlington: IEEE;2004. p. 320–3.
21.
go back to reference Liu T, Liu W, Qiao L, Luo T. Point set registration based on implicit surface fitting with equivalent distance. In: IEEE International Conference on Image Processing. Quebec City:2015. p. 2680–4. Liu T, Liu W, Qiao L, Luo T. Point set registration based on implicit surface fitting with equivalent distance. In: IEEE International Conference on Image Processing. Quebec City:2015. p. 2680–4.
22.
go back to reference Ravikumar N, Frangi AF. Robust group-wise rigid registration of point sets using t-mixture model. Medical Imaging. 2016;9784. Ravikumar N, Frangi AF. Robust group-wise rigid registration of point sets using t-mixture model. Medical Imaging. 2016;9784.
23.
go back to reference Du S, Liu J, Bi B, Zhu J, Xue J. New iterative closest point algorithm for isotropic scaling registration of point sets with noise. J Vis Commun Image Represent. 2016; 38(C):207–16.CrossRef Du S, Liu J, Bi B, Zhu J, Xue J. New iterative closest point algorithm for isotropic scaling registration of point sets with noise. J Vis Commun Image Represent. 2016; 38(C):207–16.CrossRef
24.
go back to reference Tsin Y, Kanade T. A correlation-based approach to robust point set registration. In: European Conference on Computer Vision. Proceedings. Prague: Springer;2004. p. 558–69. Tsin Y, Kanade T. A correlation-based approach to robust point set registration. In: European Conference on Computer Vision. Proceedings. Prague: Springer;2004. p. 558–69.
25.
go back to reference Klein S, Pluim JP, Staring M, Viergever MA. Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis. 2009; 81(3):227–39.CrossRef Klein S, Pluim JP, Staring M, Viergever MA. Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis. 2009; 81(3):227–39.CrossRef
26.
go back to reference Andreopoulos A, Tsotsos JK. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri. Med Image Anal. 2008; 12(3):335–57.CrossRefPubMed Andreopoulos A, Tsotsos JK. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri. Med Image Anal. 2008; 12(3):335–57.CrossRefPubMed
27.
go back to reference Stegmann MB. Active appearance models: Theory, extensions and cases. Inf Math Modell. 2000; 1(6):748–54. Stegmann MB. Active appearance models: Theory, extensions and cases. Inf Math Modell. 2000; 1(6):748–54.
29.
go back to reference Wu Y, Ling H, Yu J, Li F. Blurred target tracking by blur-driven tracker. In: International Conference on Computer Vision. Barcelona: IEEE Computer Society;2011. p. 1100–7. Wu Y, Ling H, Yu J, Li F. Blurred target tracking by blur-driven tracker. In: International Conference on Computer Vision. Barcelona: IEEE Computer Society;2011. p. 1100–7.
30.
go back to reference Gorry PA. General least-squares smoothing and differentiation by the convolution (savitzky-golay) method. Anal Chem. 1990; 62(6):570–3.CrossRef Gorry PA. General least-squares smoothing and differentiation by the convolution (savitzky-golay) method. Anal Chem. 1990; 62(6):570–3.CrossRef
Metadata
Title
Surface structure feature matching algorithm for cardiac motion estimation
Authors
Zhengrui Zhang
Xuan Yang
Cong Tan
Wei Guo
Guoliang Chen
Publication date
01-12-2017
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12911-017-0560-z

Other articles of this Special Issue 3/2017

BMC Medical Informatics and Decision Making 3/2017 Go to the issue