Skip to main content
Top

22-01-2024 | Supraventricular Tachycardia

A machine learning approach to differentiate wide QRS tachycardia: distinguishing ventricular tachycardia from supraventricular tachycardia

Authors: Zhen-Zhen Li, Wei Zhao, YangMing Mao, Dan Bo, QiuShi Chen, Pipin Kojodjojo, FengXiang Zhang

Published in: Journal of Interventional Cardiac Electrophysiology

Login to get access

Abstract

Background

Differential diagnosis of wide QRS tachycardia (WQCT) has been a challenging issue. Published algorithms to distinguish ventricular tachycardia (VT) and supraventricular tachycardia (SVT) have limited diagnostic capabilities.

Methods

A total of 278 patients with WQCT from January 2010 to March 2022 were enrolled. The electrophysiological study confirmed SVT in 154 patients and VT in 65 ones. Two hundred nineteen WQCT 12-lead ECGs were randomly divided into development cohort (n = 165) and testing cohort (n = 54) data sets. The development cohort was split into a training group (n = 115) and an internal validation group (n = 50). Forty ECG features extracted from the 219 WQCT ECGs are fed into 9 iteratively trained ML algorithms. This novel ML algorithm was also compared with four published algorithms.

Results

In the development cohort, the Gradient Boosting Machine (GBM) model displayed the maximum area under curve (AUC) (0.91, 95% confidence interval (CI) 0.81–1.00). In the testing cohort, the GBM model had a higher AUC of 0.97 compared to 4 validated ECG algorithms, namely, Brugada (0.68), avR (0.62), RWPTII (0.72), and LLA algorithms (0.70). Accuracy, sensitivity, specificity, negative predictive value, and positive predictive value of the GBM model were 0.94, 0.97, 0.90, 0.94, and 0.95, respectively.

Conclusions

A GBM ML model contributes to distinguishing SVT from VT based on surface ECG features. In addition, we were able to identify important indicators for distinguishing WQCT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brugada P, Brugada J, Mont L, Smeets J, Andries EW. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991;83(5):1649–59.CrossRefPubMed Brugada P, Brugada J, Mont L, Smeets J, Andries EW. A new approach to the differential diagnosis of a regular tachycardia with a wide QRS complex. Circulation. 1991;83(5):1649–59.CrossRefPubMed
2.
go back to reference Griffith MJ, Garratt CJ, Mounsey P, Camm AJ. Ventricular tachycardia as default diagnosis in broad complex tachycardia. Lancet. 1994;343(8894):386–8.CrossRefPubMed Griffith MJ, Garratt CJ, Mounsey P, Camm AJ. Ventricular tachycardia as default diagnosis in broad complex tachycardia. Lancet. 1994;343(8894):386–8.CrossRefPubMed
3.
go back to reference Vereckei A, Duray G, Szenasi G, Altemose GT, Miller JM. New algorithm using only lead aVR for differential diagnosis of wide QRS complex tachycardia. Heart Rhythm. 2008;5(1):89–98.CrossRefPubMed Vereckei A, Duray G, Szenasi G, Altemose GT, Miller JM. New algorithm using only lead aVR for differential diagnosis of wide QRS complex tachycardia. Heart Rhythm. 2008;5(1):89–98.CrossRefPubMed
4.
go back to reference Pava LF, Perafan P, Badiel M, Arango JJ, Mont L, Morillo CA, Brugada J. R-wave peak time at DII: a new criterion for differentiating between wide complex QRS tachycardias. Heart Rhythm. 2010;7(7):922–6.CrossRefPubMed Pava LF, Perafan P, Badiel M, Arango JJ, Mont L, Morillo CA, Brugada J. R-wave peak time at DII: a new criterion for differentiating between wide complex QRS tachycardias. Heart Rhythm. 2010;7(7):922–6.CrossRefPubMed
5.
go back to reference Chen Q, Xu J, Gianni C, Trivedi C, Della Rocca DG, Bassiouny M, Canpolat U, Tapia AC, Burkhardt JD, Sanchez JE, et al. Simple electrocardiographic criteria for rapid identification of wide QRS complex tachycardia: the new limb lead algorithm. Heart Rhythm. 2020;17(3):431–8.CrossRefPubMed Chen Q, Xu J, Gianni C, Trivedi C, Della Rocca DG, Bassiouny M, Canpolat U, Tapia AC, Burkhardt JD, Sanchez JE, et al. Simple electrocardiographic criteria for rapid identification of wide QRS complex tachycardia: the new limb lead algorithm. Heart Rhythm. 2020;17(3):431–8.CrossRefPubMed
6.
go back to reference Jastrzebski M, Kukla P, Czarnecka D, Kawecka-Jaszcz K. Comparison of five electrocardiographic methods for differentiation of wide QRS-complex tachycardias. Europace. 2012;14(8):1165–71.CrossRefPubMed Jastrzebski M, Kukla P, Czarnecka D, Kawecka-Jaszcz K. Comparison of five electrocardiographic methods for differentiation of wide QRS-complex tachycardias. Europace. 2012;14(8):1165–71.CrossRefPubMed
7.
go back to reference Missel R, Gyawali PK, Murkute JV, Li Z, Zhou S, AbdelWahab A, Davis J, Warren J, Sapp JL, Wang L. A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms. Comput Biol Med. 2020;126:104013.CrossRefPubMedPubMedCentral Missel R, Gyawali PK, Murkute JV, Li Z, Zhou S, AbdelWahab A, Davis J, Warren J, Sapp JL, Wang L. A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms. Comput Biol Med. 2020;126:104013.CrossRefPubMedPubMedCentral
8.
go back to reference Feeny AK, Chung MK, Madabhushi A, Attia ZI, Cikes M, Firouznia M, Friedman PA, Kalscheur MM, Kapa S, Narayan SM, et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol. 2020;13(8):e007952.CrossRefPubMedPubMedCentral Feeny AK, Chung MK, Madabhushi A, Attia ZI, Cikes M, Firouznia M, Friedman PA, Kalscheur MM, Kapa S, Narayan SM, et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol. 2020;13(8):e007952.CrossRefPubMedPubMedCentral
9.
go back to reference Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86.CrossRefPubMed Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40(24):1975–86.CrossRefPubMed
10.
go back to reference Zhao WZR, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang ZLH, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features. Heart Rhythm. 2022;S1547–5271(22):02173–7. Zhao WZR, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang ZLH, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features. Heart Rhythm. 2022;S1547–5271(22):02173–7.
11.
go back to reference Smole T, Zunkovic B, Piculin M, Kokalj E, Robnik-Sikonja M, Kukar M, Fotiadis DI, Pezoulas VC, Tachos NS, Barlocco F, et al. A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Comput Biol Med. 2021;135:104648.CrossRefPubMed Smole T, Zunkovic B, Piculin M, Kokalj E, Robnik-Sikonja M, Kukar M, Fotiadis DI, Pezoulas VC, Tachos NS, Barlocco F, et al. A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Comput Biol Med. 2021;135:104648.CrossRefPubMed
12.
go back to reference Zhao W, Zhu R, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang Z, Liu H, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features, Heart Rhythm 2022. https://doi.org/10.1016/j.hrthm.2022.07.010. Zhao W, Zhu R, Zhang J, Mao Y, Chen H, Ju W, Li M, Yang G, Gu K, Wang Z, Liu H, Shi J, Jiang X, Kojodjojo P, Chen M, Zhang F. Machine learning for distinguishing right from left premature ventricular contractions origin using surface electrocardiogram features, Heart Rhythm 2022. https://​doi.​org/​10.​1016/​j.​hrthm.​2022.​07.​010.
13.
go back to reference Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.CrossRefPubMed Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.CrossRefPubMed
14.
go back to reference Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8(1):347.CrossRefPubMedPubMedCentral Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, Guo F, He Y, Liu Y, Huang Q, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8(1):347.CrossRefPubMedPubMedCentral
15.
go back to reference Filli L, Rosskopf AB, Sutter R, Fucentese SF, Pfirrmann CWA. MRI predictors of posterolateral corner instability: a decision tree analysis of patients with acute anterior cruciate ligament tear. Radiology. 2018;289(1):170–80.CrossRefPubMed Filli L, Rosskopf AB, Sutter R, Fucentese SF, Pfirrmann CWA. MRI predictors of posterolateral corner instability: a decision tree analysis of patients with acute anterior cruciate ligament tear. Radiology. 2018;289(1):170–80.CrossRefPubMed
16.
go back to reference Fabris F, Doherty A, Palmer D, de Magalhaes JP, Freitas AA. A new approach for interpreting random forest models and its application to the biology of ageing. Bioinformatics. 2018;34(14):2449–56.CrossRefPubMedPubMedCentral Fabris F, Doherty A, Palmer D, de Magalhaes JP, Freitas AA. A new approach for interpreting random forest models and its application to the biology of ageing. Bioinformatics. 2018;34(14):2449–56.CrossRefPubMedPubMedCentral
17.
go back to reference Mall R, Cerulo L, Garofano L, Frattini V, Kunji K, Bensmail H, Sabedot TS, Noushmehr H, Lasorella A, Iavarone A, et al. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Res. 2018;46(7):e39.CrossRefPubMedPubMedCentral Mall R, Cerulo L, Garofano L, Frattini V, Kunji K, Bensmail H, Sabedot TS, Noushmehr H, Lasorella A, Iavarone A, et al. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Res. 2018;46(7):e39.CrossRefPubMedPubMedCentral
18.
go back to reference Bertsimas D, Kallus N, Weinstein AM, Zhuo YD. Personalized diabetes management using electronic medical records. Diabetes Care. 2017;40(2):210–7.CrossRefPubMed Bertsimas D, Kallus N, Weinstein AM, Zhuo YD. Personalized diabetes management using electronic medical records. Diabetes Care. 2017;40(2):210–7.CrossRefPubMed
19.
go back to reference Mao Z, Xia M, Jiang B, Xu D, Shi P. Incipient fault diagnosis for high-speed train traction systems via stacked generalization. IEEE Trans Cybernetics. 2020;52(8):7624–33.CrossRef Mao Z, Xia M, Jiang B, Xu D, Shi P. Incipient fault diagnosis for high-speed train traction systems via stacked generalization. IEEE Trans Cybernetics. 2020;52(8):7624–33.CrossRef
20.
go back to reference Mookiah MRK, Hogg S, MacGillivray TJ, Prathiba V, Pradeepa R, Mohan V, Anjana RM, Doney AS, Palmer CNA, Trucco E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal. 2021;68:101905.CrossRefPubMed Mookiah MRK, Hogg S, MacGillivray TJ, Prathiba V, Pradeepa R, Mohan V, Anjana RM, Doney AS, Palmer CNA, Trucco E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal. 2021;68:101905.CrossRefPubMed
21.
go back to reference Tolios A, De Las RJ, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat. 2020;48:100662.CrossRefPubMed Tolios A, De Las RJ, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat. 2020;48:100662.CrossRefPubMed
22.
go back to reference Moccetti F, Yadava M, Latifi Y, Strebel I, Pavlovic N, Knecht S, Asatryan B, Schaer B, Kühne M, Henrikson CA, Stephan FP. Simplified integrated clinical and electrocardiographic algorithm for differentiation of wide QRS complex tachycardia: the basel algorithm. Clin Electroencephalogr. 2022;8(7):831–9. Moccetti F, Yadava M, Latifi Y, Strebel I, Pavlovic N, Knecht S, Asatryan B, Schaer B, Kühne M, Henrikson CA, Stephan FP. Simplified integrated clinical and electrocardiographic algorithm for differentiation of wide QRS complex tachycardia: the basel algorithm. Clin Electroencephalogr. 2022;8(7):831–9.
Metadata
Title
A machine learning approach to differentiate wide QRS tachycardia: distinguishing ventricular tachycardia from supraventricular tachycardia
Authors
Zhen-Zhen Li
Wei Zhao
YangMing Mao
Dan Bo
QiuShi Chen
Pipin Kojodjojo
FengXiang Zhang
Publication date
22-01-2024
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-024-01743-9