Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 12/2014

01-12-2014 | Basic Research

Subject-specific Patterns of Femur-labrum Contact are Complex and Vary in Asymptomatic Hips and Hips With Femoroacetabular Impingement

Authors: Ashley L. Kapron, PhD, Stephen K. Aoki, MD, Christopher L. Peters, MD, Andrew E. Anderson, PhD

Published in: Clinical Orthopaedics and Related Research® | Issue 12/2014

Login to get access

Abstract

Background

Femoroacetabular impingement (FAI) may constrain hip articulation and cause chondrolabral damage, but to our knowledge, in vivo articulation and femur-labrum contact patterns have not been quantified.

Purpose

In this exploratory study, we describe the use of high-speed dual-fluoroscopy and model-based tracking to dynamically measure in vivo hip articulation and estimate the location of femur-labrum contact in six asymptomatic hips and three hips with FAI during the impingement examination. We asked: (1) Does femur-labrum contact occur at the terminal position of impingement? (2) Could range of motion (ROM) during the impingement examination appear decreased in hips with FAI? (3) Does the location of femur-labrum contact coincide with that of minimum bone-to-bone distance? (4) In the patients with FAI, does the location of femur-labrum contact qualitatively correspond to the location of damage observed intraoperatively?

Methods

High-speed dual-fluoroscopy images were acquired continuously as the impingement examination was performed. CT arthrogram images of all subjects were segmented to generate three-dimensional (3-D) surfaces for the pelvis, femur, and labrum. Model-based tracking of the fluoroscopy images enabled dynamic kinematic observation of the 3-D surfaces. At the terminal position of the examination, the region of minimal bone-to-bone distance was compared with the estimated location of femur-labrum contact. Each patient with FAI underwent hip arthroscopy; the location of femur-labrum contact was compared qualitatively with damage found during surgery. As an exploratory study, statistics were not performed.

Results

Femur-labrum contact was observed in both groups, but patterns of contact were subject-specific. At the terminal position of the impingement examination, internal rotation and adduction angles for each of the patients with FAI were less than the 95% confidence intervals (CIs) for the asymptomatic control subjects. The location of minimum bone-to-bone distance agreed with the region of femur-labrum contact in two of nine hips. The locations of chondrolabral damage identified during surgery qualitatively coincided with the region of femur-labrum contact.

Conclusions

Dual-fluoroscopy and model-based tracking provided the ability to assess hip kinematics in vivo during the entire impingement examination. The high variability in observed labrum-femur contact patterns at the terminal position of the examination provides evidence that subtle anatomic features could dictate underlying hip biomechanics. Although femur-labrum contact occurs in asymptomatic and symptomatic hips at the terminal position of the impingement examination, contact may occur at reduced adduction and internal rotation in patients with FAI. Use of minimum bone-to-bone distance may not appropriately identify the region of femur-labrum contact. Additional research, using a larger cohort and appropriate statistical tests, is required to confirm the findings of this exploratory study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Audenaert E, Van Houcke J, Maes B, Vanden Bossche L, Victor J, Pattyn C. Range of motion in femoroacetabular impingement. Acta Orthop Belg. 2012;78:327–332.PubMed Audenaert E, Van Houcke J, Maes B, Vanden Bossche L, Victor J, Pattyn C. Range of motion in femoroacetabular impingement. Acta Orthop Belg. 2012;78:327–332.PubMed
2.
go back to reference Audenaert EA, Mahieu P, Pattyn C. Three-dimensional assessment of cam engagement in femoroacetabular impingement. Arthroscopy. 2011;27:167–171.PubMedCrossRef Audenaert EA, Mahieu P, Pattyn C. Three-dimensional assessment of cam engagement in femoroacetabular impingement. Arthroscopy. 2011;27:167–171.PubMedCrossRef
3.
go back to reference Audenaert EA, Peeters I, Vigneron L, Baelde N, Pattyn C. Hip morphological characteristics and range of internal rotation in femoroacetabular impingement. Am J Sports Med. 2012;40:1329–1336.PubMedCrossRef Audenaert EA, Peeters I, Vigneron L, Baelde N, Pattyn C. Hip morphological characteristics and range of internal rotation in femoroacetabular impingement. Am J Sports Med. 2012;40:1329–1336.PubMedCrossRef
4.
go back to reference Beaule PE, Hynes K, Parker G, Kemp KA. Can the alpha angle assessment of cam impingement predict acetabular cartilage delamination? Clin Orthop Relat Res. 2012;470:3361–3367.PubMedCentralPubMedCrossRef Beaule PE, Hynes K, Parker G, Kemp KA. Can the alpha angle assessment of cam impingement predict acetabular cartilage delamination? Clin Orthop Relat Res. 2012;470:3361–3367.PubMedCentralPubMedCrossRef
5.
go back to reference Beaule PE, O’Neill M, Rakhra K. Acetabular labral tears. J Bone Joint Surg Am. 2009;91:701–710.PubMedCrossRef Beaule PE, O’Neill M, Rakhra K. Acetabular labral tears. J Bone Joint Surg Am. 2009;91:701–710.PubMedCrossRef
6.
go back to reference Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–1018.PubMedCrossRef Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–1018.PubMedCrossRef
7.
go back to reference Bedi A, Dolan M, Leunig M, Kelly BT. Static and dynamic mechanical causes of hip pain. Arthroscopy. 2011;27:235–251.PubMedCrossRef Bedi A, Dolan M, Leunig M, Kelly BT. Static and dynamic mechanical causes of hip pain. Arthroscopy. 2011;27:235–251.PubMedCrossRef
8.
go back to reference Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy. 2012;28:204–210.PubMedCrossRef Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy. 2012;28:204–210.PubMedCrossRef
9.
go back to reference Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng. 2006;128:604–609.PubMedCentralPubMedCrossRef Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng. 2006;128:604–609.PubMedCentralPubMedCrossRef
10.
go back to reference Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G. In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford). 2008;47:1622–1627.PubMedCentralPubMedCrossRef Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G. In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford). 2008;47:1622–1627.PubMedCentralPubMedCrossRef
11.
go back to reference Chang TC, Kang H, Arata L, Zhao W. A pre-operative approach of range of motion simulation and verification for femoroacetabular impingement. Int J Med Robot. 2011 Jun 18 [Epub ahead of print]. Chang TC, Kang H, Arata L, Zhao W. A pre-operative approach of range of motion simulation and verification for femoroacetabular impingement. Int J Med Robot. 2011 Jun 18 [Epub ahead of print].
12.
go back to reference Clohisy JC, Knaus ER, Hunt DM, Lesher JM, Harris-Hayes M, Prather H. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467:638–644.PubMedCentralPubMedCrossRef Clohisy JC, Knaus ER, Hunt DM, Lesher JM, Harris-Hayes M, Prather H. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467:638–644.PubMedCentralPubMedCrossRef
13.
go back to reference Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–120.PubMed Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–120.PubMed
14.
go back to reference Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144.PubMedCrossRef Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144.PubMedCrossRef
15.
go back to reference Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30:1133–1139.PubMedCentralPubMedCrossRef Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30:1133–1139.PubMedCentralPubMedCrossRef
16.
go back to reference Hunt MA, Guenther JR, Gilbart MK. Kinematic and kinetic differences during walking in patients with and without symptomatic femoroacetabular impingement. Clin Biomech (Bristol, Avon). 2013;28:519–523. Hunt MA, Guenther JR, Gilbart MK. Kinematic and kinetic differences during walking in patients with and without symptomatic femoroacetabular impingement. Clin Biomech (Bristol, Avon). 2013;28:519–523.
17.
go back to reference Kapron A, Aoki S, Peters CL, Mass SA, Bey MJ, Zauel R, Anderson AE. Accuracy and feasibility of dual fluoroscopy and model-based tracking to quantify in vivo hip kinematics during clinical exams. J Appl Biomech. 2014 Feb 25 [Epub ahead of print]. Kapron A, Aoki S, Peters CL, Mass SA, Bey MJ, Zauel R, Anderson AE. Accuracy and feasibility of dual fluoroscopy and model-based tracking to quantify in vivo hip kinematics during clinical exams. J Appl Biomech. 2014 Feb 25 [Epub ahead of print].
18.
go back to reference Kennedy MJ, Lamontagne M, Beaule PE. Femoroacetabular impingement alters hip and pelvic biomechanics during gait walking biomechanics of FAI. Gait Posture. 2009;30:41–44.PubMedCrossRef Kennedy MJ, Lamontagne M, Beaule PE. Femoroacetabular impingement alters hip and pelvic biomechanics during gait walking biomechanics of FAI. Gait Posture. 2009;30:41–44.PubMedCrossRef
19.
20.
go back to reference Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M. Anterior femoroacetabular impingement: Part I. Techniques of joint preserving surgery. Clin Orthop Relat Res. 2004;418:61–66.PubMedCrossRef Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M. Anterior femoroacetabular impingement: Part I. Techniques of joint preserving surgery. Clin Orthop Relat Res. 2004;418:61–66.PubMedCrossRef
21.
go back to reference Lee CB, Clark J. Fluoroscopic demonstration of femoroacetabular impingement during hip arthroscopy. Arthroscopy. 2011;27:994–1004.PubMedCrossRef Lee CB, Clark J. Fluoroscopic demonstration of femoroacetabular impingement during hip arthroscopy. Arthroscopy. 2011;27:994–1004.PubMedCrossRef
22.
go back to reference Pfirrmann CW, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology. 2006;240:778–785.PubMedCrossRef Pfirrmann CW, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J. Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology. 2006;240:778–785.PubMedCrossRef
23.
go back to reference Philippon M, Schenker M, Briggs K, Kuppersmith D. Femoroacetabular impingement in 45 professional athletes: associated pathologies and return to sport following arthroscopic decompression. Knee Surg Sports Traumatol Arthrosc. 2007;15:908–914.PubMedCentralPubMedCrossRef Philippon M, Schenker M, Briggs K, Kuppersmith D. Femoroacetabular impingement in 45 professional athletes: associated pathologies and return to sport following arthroscopic decompression. Knee Surg Sports Traumatol Arthrosc. 2007;15:908–914.PubMedCentralPubMedCrossRef
24.
go back to reference Philippon MJ, Maxwell RB, Johnston TL, Schenker M, Briggs KK. Clinical presentation of femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc. 2007;15:1041–1047.PubMedCrossRef Philippon MJ, Maxwell RB, Johnston TL, Schenker M, Briggs KK. Clinical presentation of femoroacetabular impingement. Knee Surg Sports Traumatol Arthrosc. 2007;15:1041–1047.PubMedCrossRef
25.
go back to reference Rylander J, Shu B, Favre J, Safran M, Andriacchi T. Functional testing provides unique insights into the pathomechanics of femoroacetabular impingement and an objective basis for evaluating treatment outcome. J Orthop Res. 2013;31:1461–1468.PubMedCrossRef Rylander J, Shu B, Favre J, Safran M, Andriacchi T. Functional testing provides unique insights into the pathomechanics of femoroacetabular impingement and an objective basis for evaluating treatment outcome. J Orthop Res. 2013;31:1461–1468.PubMedCrossRef
26.
go back to reference Safran MR, Giordano G, Lindsey DP, Gold GE, Rosenberg J, Zaffagnini S, Giori NJ. Strains across the acetabular labrum during hip motion: a cadaveric model. Am J Sports Med. 2011;39(suppl):92S–102S.PubMedCrossRef Safran MR, Giordano G, Lindsey DP, Gold GE, Rosenberg J, Zaffagnini S, Giori NJ. Strains across the acetabular labrum during hip motion: a cadaveric model. Am J Sports Med. 2011;39(suppl):92S–102S.PubMedCrossRef
27.
go back to reference Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;25:122–131.PubMedCrossRef Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;25:122–131.PubMedCrossRef
28.
go back to reference Wan L, de Asla RJ, Rubash HE, Li G. In vivo cartilage contact deformation of human ankle joints under full body weight. J Orthop Res. 2008;26:1081–1089.PubMedCrossRef Wan L, de Asla RJ, Rubash HE, Li G. In vivo cartilage contact deformation of human ankle joints under full body weight. J Orthop Res. 2008;26:1081–1089.PubMedCrossRef
29.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I; Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion: part I. Ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35:543–548. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I; Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion: part I. Ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35:543–548.
30.
go back to reference Zebala LP, Schoenecker PL, Clohisy JC. Anterior femoroacetabular impingement: a diverse disease with evolving treatment options. Iowa Orthop J. 2007;27:71–81.PubMedCentralPubMed Zebala LP, Schoenecker PL, Clohisy JC. Anterior femoroacetabular impingement: a diverse disease with evolving treatment options. Iowa Orthop J. 2007;27:71–81.PubMedCentralPubMed
Metadata
Title
Subject-specific Patterns of Femur-labrum Contact are Complex and Vary in Asymptomatic Hips and Hips With Femoroacetabular Impingement
Authors
Ashley L. Kapron, PhD
Stephen K. Aoki, MD
Christopher L. Peters, MD
Andrew E. Anderson, PhD
Publication date
01-12-2014
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 12/2014
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-014-3919-9

Other articles of this Issue 12/2014

Clinical Orthopaedics and Related Research® 12/2014 Go to the issue

Symposium: 2013 Limb Lengthening and Reconstruction Society

What Risk Factors Predict Usage of Gastrocsoleus Recession During Tibial Lengthening?

Symposium: 2013 Limb Lengthening and Reconstruction Society

Precision of the PRECICE® Internal Bone Lengthening Nail