Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2011

Open Access 01-12-2011 | Research article

Subcoronary versus supracoronary aortic stenosis. an experimental evaluation

Authors: Mette Sorensen, J Michael Hasenkam, Henrik Jensen, Erik Sloth

Published in: Journal of Cardiothoracic Surgery | Issue 1/2011

Login to get access

Abstract

Background

Valvular aortic stenosis is the most common cause of left ventricular hypertrophy due to gradually increasing pressure work. As the stenosis develop the left ventricular hypertrophy may lead to congestive heart failure, increased risk of perioperative complications and also increased risk of sudden death. A functional porcine model imitating the pathophysiological nature of valvular aortic stenosis is very much sought after in order to study the geometrical and pathophysiological changes of the left ventricle, timing of surgery and also pharmacological therapy in this patient group.
Earlier we developed a porcine model for aortic stenosis based on supracoronary aortic banding, this model may not completely imitate the pathophysiological changes that occurs when valvular aortic stenosis is present including the coronary blood flow. It would therefore be desirable to optimize this model according to the localization of the stenosis.

Methods

In 20 kg pigs subcoronary (n = 8), supracoronary aortic banding (n = 8) or sham operation (n = 4) was preformed via a left lateral thoracotomy. The primary endpoint was left ventricular wall thickness; secondary endpoints were heart/body weight ratio and the systolic/diastolic blood flow ratio in the left anterior descending coronary. Statistical evaluation by oneway anova and unpaired t-test.

Results

Sub- and supracoronary banding induce an equal degree of left ventricular hypertrophy compared with the control group. The coronary blood flow ratio was slightly but not significantly higher in the supracoronary group (ratio = 0.45) compared with the two other groups (subcoronary ratio = 0.36, control ratio = 0.34).

Conclusions

A human pathophysiologically compatible porcine model for valvular aortic stenosis was developed by performing subcoronary aortic banding. Sub- and supracoronary aortic banding induce an equal degree of left ventricular hypertrophy. This model may be valid for experimental investigations of aortic valve stenosis but studies of left ventricular hypertrophy can be studied equally well by graduated constriction of the ascending aorta.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pomerance A: Pathogenesis of aortic stenosis and its relation to age. BrHeart J. 1972, 34: 569-574. Pomerance A: Pathogenesis of aortic stenosis and its relation to age. BrHeart J. 1972, 34: 569-574.
2.
go back to reference Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA: Controversies in ventricular remodelling. Lancet. 2006, 367: 356-367. 10.1016/S0140-6736(06)68074-4.CrossRefPubMed Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA: Controversies in ventricular remodelling. Lancet. 2006, 367: 356-367. 10.1016/S0140-6736(06)68074-4.CrossRefPubMed
3.
go back to reference Haider AW, Larson MG, Benjamin EJ, Levy D: Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. JAmCollCardiol. 1998, 32: 1454-1459. Haider AW, Larson MG, Benjamin EJ, Levy D: Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. JAmCollCardiol. 1998, 32: 1454-1459.
4.
go back to reference Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. NEnglJMed. 1990, 322: 1561-1566. 10.1056/NEJM199005313222203.CrossRef Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. NEnglJMed. 1990, 322: 1561-1566. 10.1056/NEJM199005313222203.CrossRef
5.
go back to reference Mehta RH, Bruckman D, Das S, Tsai T, Russman P, Karavite D: Implications of increased left ventricular mass index on in-hospital outcomes in patients undergoing aortic valve surgery. JThoracCardiovascSurg. 2001, 122: 919-928. Mehta RH, Bruckman D, Das S, Tsai T, Russman P, Karavite D: Implications of increased left ventricular mass index on in-hospital outcomes in patients undergoing aortic valve surgery. JThoracCardiovascSurg. 2001, 122: 919-928.
6.
go back to reference Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA: Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation. 1995, 91: 1814-1823.CrossRefPubMed Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA: Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation. 1995, 91: 1814-1823.CrossRefPubMed
7.
go back to reference Novick RJ, Stefaniszyn HJ, Michel RP, Burdon FD, Salerno TA: Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping. JThoracCardiovascSurg. 1985, 89: 547-566. Novick RJ, Stefaniszyn HJ, Michel RP, Burdon FD, Salerno TA: Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping. JThoracCardiovascSurg. 1985, 89: 547-566.
8.
go back to reference Kassab GS, Gregersen H, Nielsen SL, Lu X, Tanko LB, Falk E: Remodelling of the left anterior descending artery in a porcine model of supravalvular aortic stenosis. JHypertens. 2002, 20: 2429-2437.CrossRef Kassab GS, Gregersen H, Nielsen SL, Lu X, Tanko LB, Falk E: Remodelling of the left anterior descending artery in a porcine model of supravalvular aortic stenosis. JHypertens. 2002, 20: 2429-2437.CrossRef
9.
go back to reference Gong G, Liu J, Liang P, Guo T, Hu Q, Ochiai K: Oxidative capacity in failing hearts. AmJPhysiol Heart CircPhysiol. 2003, 285: H541-H548.CrossRef Gong G, Liu J, Liang P, Guo T, Hu Q, Ochiai K: Oxidative capacity in failing hearts. AmJPhysiol Heart CircPhysiol. 2003, 285: H541-H548.CrossRef
10.
go back to reference Ye Y, Gong G, Ochiai K, Liu J, Zhang J: High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001, 20: 1570-1576.CrossRef Ye Y, Gong G, Ochiai K, Liu J, Zhang J: High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001, 20: 1570-1576.CrossRef
11.
go back to reference Walther T, Falk V, Binner C, Loscher N, Schubert A, Rauch T: Experimental aortic stenosis and corresponding left ventricular hypertrophy in sheep. JInvest Surg. 2000, 13: 327-331. 10.1080/089419300750059370.CrossRef Walther T, Falk V, Binner C, Loscher N, Schubert A, Rauch T: Experimental aortic stenosis and corresponding left ventricular hypertrophy in sheep. JInvest Surg. 2000, 13: 327-331. 10.1080/089419300750059370.CrossRef
12.
go back to reference Meerson FZ: Compensatory hyperfunction of the heart and cardiac insufficiency. CircRes. 1962, 10: 250-258. Meerson FZ: Compensatory hyperfunction of the heart and cardiac insufficiency. CircRes. 1962, 10: 250-258.
13.
go back to reference Su-Fan Q, Brum JM, Kaye MP, Bove AA: A new technique for producing pure aortic stenosis in animals. AmJPhysiol. 1984, 246: H296-H301. Su-Fan Q, Brum JM, Kaye MP, Bove AA: A new technique for producing pure aortic stenosis in animals. AmJPhysiol. 1984, 246: H296-H301.
14.
go back to reference Muller P, Kazakov A, Semenov A, Bohm M, Laufs U: Pressure-induced cardiac overload induces upregulation of endothelial and myocardial progenitor cells. CardiovascRes. 2008, 77: 151-159.CrossRef Muller P, Kazakov A, Semenov A, Bohm M, Laufs U: Pressure-induced cardiac overload induces upregulation of endothelial and myocardial progenitor cells. CardiovascRes. 2008, 77: 151-159.CrossRef
15.
go back to reference Gilsbach R, Brede M, Beetz N, Moura E, Muthig V, Gerstner C, Barreto F, Neubauer S, Vieira-Coelho MA, Hein L: Heterozygous alpha 2C-adrenoceptor-deficient mice develop heart failure after transverse aortic constriction. CardiovascRes. 2007, 75: 728-737.CrossRef Gilsbach R, Brede M, Beetz N, Moura E, Muthig V, Gerstner C, Barreto F, Neubauer S, Vieira-Coelho MA, Hein L: Heterozygous alpha 2C-adrenoceptor-deficient mice develop heart failure after transverse aortic constriction. CardiovascRes. 2007, 75: 728-737.CrossRef
16.
go back to reference Lunde S, Smerup M, Hasenkam JM, Sloth E: A model for left ventricular hypertrophy enabling non-invasive assessment of cardiac function. ScandCardiovascJ. 2009, 43: 267-272. Lunde S, Smerup M, Hasenkam JM, Sloth E: A model for left ventricular hypertrophy enabling non-invasive assessment of cardiac function. ScandCardiovascJ. 2009, 43: 267-272.
Metadata
Title
Subcoronary versus supracoronary aortic stenosis. an experimental evaluation
Authors
Mette Sorensen
J Michael Hasenkam
Henrik Jensen
Erik Sloth
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2011
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/1749-8090-6-100

Other articles of this Issue 1/2011

Journal of Cardiothoracic Surgery 1/2011 Go to the issue