Skip to main content
Top
Published in: BMC Ophthalmology 1/2015

Open Access 01-12-2015 | Research article

Study on establishment and mechanics application of finite element model of bovine eye

Authors: Yan-Hui Cui, Ju-Fang Huang, Si-Ying Cheng, Wei Wei, Lei Shang, Na Li, Kun Xiong

Published in: BMC Ophthalmology | Issue 1/2015

Login to get access

Abstract

Background

Glaucoma mainly induced by increased intraocular pressure (IOP), it was believed that the pressure that wall of eyeball withstands were determined by material properties of the tissue and stereoscopic geometry of the eyeball. In order to study the pressure changes in different parts of interior eyeball wall, it is necessary to develop a novel eye ball FEM with more accurate geometry and material properties. Use this model to study the stress changes in different parts of eyeball, especially the lamina cribrosa (LC) under normal physiological and pathological IOP, and provide a mathematical model for biomechanical studies of selected retinal ganglion cells (RGCs) death.

Methods

(1) Sclera was cut into 3.8-mm wide, 14.5-mm long strips, and cornea was cut into 9.5-mm-wide and 10-mm-long strips; (2) 858 Mini BionixII biomechanical loading instrument was used to stretch sclera and cornea. The stretching rate for sclera was 0.3 mm/s, 3 mm/s, 30 mm/s, 300 mm/s; and for cornea were 0.3 mm/s and 30 mm/s. The deformation-stress curve was recorded; (3) Naso-temporal and longitudinal distance of LC were measured; (4) Micro-CT was used to accurately scan fresh bovine eyes and obtain the geometrical image and data to establish bovine eye model. 3-D reconstruction was performed using these images and data to work out the geometric shape of bovine eye; (5) IOP levels for eyeball FEM was set and the inner wall of eyeball was used taken as load-bearing part. Simulated eyeball FE modeling was run under the IOP level of 10 mmHg, 30 mmHg, 60 mmHg and 100 mmHg, and the force condition of different parts of eyeball was recorded under different IOP levels.

Results

(1) We obtained the material parameters more in line with physiological conditions and established a more realistic eyeball model using reversed engineering of parameters optimization method to calculate the complex nonlinear super-elastic and viscoelastic parameters more accurately; (2) We observed the following phenomenon by simulating increased pressure using FEM: as simulative IOP increased, the stress concentration scope on the posterior half of sclera became narrower; in the meantime, the stress-concentration scope on the anterior half of scleral gradually expanded, and the stress on the central part of LC is highest.

Conclusion

As simulative IOP increased, stress-concentration scope on the posterior half of sclera gradually narrowed; in the meantime, the stress-concentration scope on the anterior half of sclera gradually expanded, and the stress on the LC is mainly concentrated in the central part, suggesting that IOP is mainly concentrated in the anterior part of the eyeball as it increases. This might provide a biomechanical evidence to explain why RGCs in peripheral part die earlier than RGCs in central part under HIOP.
Literature
1.
go back to reference Huang JF, Shang L, Zhang MQ, Wang H, Chen D, Tong JB, et al. Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response. BMC Neurosci. 2013;14:16.CrossRefPubMedPubMedCentral Huang JF, Shang L, Zhang MQ, Wang H, Chen D, Tong JB, et al. Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response. BMC Neurosci. 2013;14:16.CrossRefPubMedPubMedCentral
2.
go back to reference Jiang SH, Shang L, Xue LX, Ding W, Chen S, Ma RF, et al. The effect and underlying mechanism of Timosaponin B-II on RGC-5 necroptosis induced by hydrogen peroxide. BMC Complementary Altern Med. 2014;14:459.CrossRef Jiang SH, Shang L, Xue LX, Ding W, Chen S, Ma RF, et al. The effect and underlying mechanism of Timosaponin B-II on RGC-5 necroptosis induced by hydrogen peroxide. BMC Complementary Altern Med. 2014;14:459.CrossRef
3.
go back to reference Shang L, Huang JF, Ding W, Chen S, Xue LX, Ma RF, et al. Calpain: a molecule to induce AIF-mediated necroptosis in RGC-5 following elevated hydrostatic pressure. BMC Neurosci. 2014;15:63.CrossRefPubMedPubMedCentral Shang L, Huang JF, Ding W, Chen S, Xue LX, Ma RF, et al. Calpain: a molecule to induce AIF-mediated necroptosis in RGC-5 following elevated hydrostatic pressure. BMC Neurosci. 2014;15:63.CrossRefPubMedPubMedCentral
4.
go back to reference Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci. 1997;38(1):83–91.PubMed Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci. 1997;38(1):83–91.PubMed
6.
go back to reference Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18(2):110–4.CrossRefPubMed Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18(2):110–4.CrossRefPubMed
7.
go back to reference Ying.Tian: Reviews on early diagnosis therapy of primary glaucoma. Chinese Journal of Practical Ophthalmology 2002(01):3–7. Ying.Tian: Reviews on early diagnosis therapy of primary glaucoma. Chinese Journal of Practical Ophthalmology 2002(01):3–7.
8.
go back to reference Li FM. Chinese Ophthalmology. Beijing: People’s Medical Publishing House; 2004. Li FM. Chinese Ophthalmology. Beijing: People’s Medical Publishing House; 2004.
9.
go back to reference Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Brit J Ophthalmol. 2006;90(3):262–7.CrossRef Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Brit J Ophthalmol. 2006;90(3):262–7.CrossRef
12.
go back to reference Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005;18(3):383–95. vi.CrossRefPubMed Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005;18(3):383–95. vi.CrossRefPubMed
13.
go back to reference Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41(11):3460–6.PubMed Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41(11):3460–6.PubMed
14.
go back to reference Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41(3):764–74.PubMed Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41(3):764–74.PubMed
15.
go back to reference Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett. 2001;305(2):139–42.CrossRefPubMed Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett. 2001;305(2):139–42.CrossRefPubMed
16.
go back to reference Martin KRG, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, et al. Gene therapy with brain-derived neurotrophic factor as a protection: Retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44(10):4357–65.CrossRefPubMed Martin KRG, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, et al. Gene therapy with brain-derived neurotrophic factor as a protection: Retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44(10):4357–65.CrossRefPubMed
17.
go back to reference Ji JZ, Elyaman W, Yip HK, Lee VWH, Yick LW, Hugon J, et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci. 2004;19(2):265–72.CrossRefPubMed Ji JZ, Elyaman W, Yip HK, Lee VWH, Yick LW, Hugon J, et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci. 2004;19(2):265–72.CrossRefPubMed
18.
go back to reference Van Adel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther. 2003;14(2):103–15.CrossRefPubMed Van Adel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther. 2003;14(2):103–15.CrossRefPubMed
19.
go back to reference Wang H, Liu QL, Luo XG, Wen JY. Protection of the retinal ganglion cells from experimental glaucoma by brain derived neurotrophic factor. Anatomy Research. 2002;24(2):119–22. +165. Wang H, Liu QL, Luo XG, Wen JY. Protection of the retinal ganglion cells from experimental glaucoma by brain derived neurotrophic factor. Anatomy Research. 2002;24(2):119–22. +165.
20.
go back to reference Huang JF, Jiang LZ, Tong JB, Chen D, Xiong K, Zeng LP: Expression of TrkB in rat retina following acute high intraocular pressure induced by brain-derived neurotrophic factor. Anatomy Research 2006(06):734-737 + 740. Huang JF, Jiang LZ, Tong JB, Chen D, Xiong K, Zeng LP: Expression of TrkB in rat retina following acute high intraocular pressure induced by brain-derived neurotrophic factor. Anatomy Research 2006(06):734-737 + 740.
21.
go back to reference Tong JB, Chen D, Zeng LP, Mo XY, Wang H, Huang JF, et al. Differential Changes of Local Blood Supply in Rat Retinae Are Involved in the Selective Loss of Retinal Ganglion Cells Following the Acute High Intraocular Pressure. Curr Eye Res. 2010;35(5):425–34.CrossRefPubMed Tong JB, Chen D, Zeng LP, Mo XY, Wang H, Huang JF, et al. Differential Changes of Local Blood Supply in Rat Retinae Are Involved in the Selective Loss of Retinal Ganglion Cells Following the Acute High Intraocular Pressure. Curr Eye Res. 2010;35(5):425–34.CrossRefPubMed
22.
go back to reference St Helen R, Mc EW. Rheology of the human sclera. 1. Anelastic behavior. Am J Ophthalmol. 1961;52:539–48.CrossRefPubMed St Helen R, Mc EW. Rheology of the human sclera. 1. Anelastic behavior. Am J Ophthalmol. 1961;52:539–48.CrossRefPubMed
23.
go back to reference Arciniegas A, Amaya LE. Mechanical behavior of the sclera. Ophthalmologica. 1986;193(1–2):45–55.CrossRefPubMed Arciniegas A, Amaya LE. Mechanical behavior of the sclera. Ophthalmologica. 1986;193(1–2):45–55.CrossRefPubMed
24.
go back to reference Eberhardt AW, Grissom JD, Siegwart Jr JT, Norton TT: Analytical and finite element models of scleral creep in tree shrews with deprivation-induced myopia. In: The 1996 3 rd Biennial Joint Conference on Engineering Systems Design and Analysis, ESDA Part 5(of 9): 1996; 1996: 189–193. Eberhardt AW, Grissom JD, Siegwart Jr JT, Norton TT: Analytical and finite element models of scleral creep in tree shrews with deprivation-induced myopia. In: The 1996 3 rd Biennial Joint Conference on Engineering Systems Design and Analysis, ESDA Part 5(of 9): 1996; 1996: 189–193.
25.
go back to reference Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci. 2000;41(8):2028–34.PubMed Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci. 2000;41(8):2028–34.PubMed
26.
go back to reference Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Investig Ophthalmol Vis Sci. 2000;41(10):2991–3000. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Investig Ophthalmol Vis Sci. 2000;41(10):2991–3000.
27.
go back to reference Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Reconstruction of human optic nerve heads for finite element modeling. Technology and health. 2005;13(4):313–29. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Reconstruction of human optic nerve heads for finite element modeling. Technology and health. 2005;13(4):313–29.
28.
go back to reference Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011;93(1):4–12.CrossRefPubMed Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011;93(1):4–12.CrossRefPubMed
29.
go back to reference Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378–87.CrossRefPubMed Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378–87.CrossRefPubMed
30.
go back to reference Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.CrossRefPubMed Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.CrossRefPubMed
31.
go back to reference Quigley HA, Flower RW, Addicks EM, McLeod DS. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 1980;19(5):505–17.PubMed Quigley HA, Flower RW, Addicks EM, McLeod DS. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 1980;19(5):505–17.PubMed
32.
go back to reference Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.CrossRefPubMed Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.CrossRefPubMed
33.
go back to reference Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95(5):673–91.CrossRefPubMed Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95(5):673–91.CrossRefPubMed
34.
go back to reference Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46(11):4189–99.CrossRefPubMed Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46(11):4189–99.CrossRefPubMed
35.
go back to reference Cahane M, Bartov E. Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Laplace's law. Ophthalmic Res. 1992;24(5):280–4.CrossRefPubMed Cahane M, Bartov E. Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Laplace's law. Ophthalmic Res. 1992;24(5):280–4.CrossRefPubMed
36.
go back to reference Girard MJ, Downs JC, Bottlang M, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization. J Biomech Eng. 2009;131(5):051012.CrossRefPubMedPubMedCentral Girard MJ, Downs JC, Bottlang M, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization. J Biomech Eng. 2009;131(5):051012.CrossRefPubMedPubMedCentral
37.
go back to reference Girard MJ, Downs JC, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng. 2009;131(5):051011.CrossRefPubMedPubMedCentral Girard MJ, Downs JC, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng. 2009;131(5):051011.CrossRefPubMedPubMedCentral
38.
go back to reference Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol. 1999;83(10):1106–11.CrossRefPubMedPubMedCentral Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol. 1999;83(10):1106–11.CrossRefPubMedPubMedCentral
39.
go back to reference Schutte S, van den Bedem SP, van Keulen F, van der Helm FC, Simonsz HJ. A finite-element analysis model of orbital biomechanics. Vision Res. 2006;46(11):1724–31.CrossRefPubMed Schutte S, van den Bedem SP, van Keulen F, van der Helm FC, Simonsz HJ. A finite-element analysis model of orbital biomechanics. Vision Res. 2006;46(11):1724–31.CrossRefPubMed
40.
go back to reference Rangarajan N, Kamalakkannan SB, Hasija V, Shams T, Jenny C, Serbanescu I, et al. Finite element model of ocular injury in abusive head trauma. J AAPOS. 2009;13(4):364–9.CrossRefPubMed Rangarajan N, Kamalakkannan SB, Hasija V, Shams T, Jenny C, Serbanescu I, et al. Finite element model of ocular injury in abusive head trauma. J AAPOS. 2009;13(4):364–9.CrossRefPubMed
41.
go back to reference Asejczyk-Widlicka M, Śródka D, Kasprzak H, Iskander D. Influence of intraocular pressure on geometrical properties of a linear model of the eyeball: Effect of optical self-adjustment. Optik-International Journal for Light and Electron Optics. 2004;115(11):517–24.CrossRef Asejczyk-Widlicka M, Śródka D, Kasprzak H, Iskander D. Influence of intraocular pressure on geometrical properties of a linear model of the eyeball: Effect of optical self-adjustment. Optik-International Journal for Light and Electron Optics. 2004;115(11):517–24.CrossRef
42.
go back to reference Feng YZ. biomechanics. Beijing: Science Press; 1983. Feng YZ. biomechanics. Beijing: Science Press; 1983.
43.
go back to reference Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A Mathematical and Physical Sciences. 1972;326(1567):565–84.CrossRef Ogden R. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A Mathematical and Physical Sciences. 1972;326(1567):565–84.CrossRef
44.
go back to reference Christensen RM. Theory of viscoelasticity. 2nd ed. Mineola, N.Y.: Dover Publications; 2003. Christensen RM. Theory of viscoelasticity. 2nd ed. Mineola, N.Y.: Dover Publications; 2003.
45.
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on. 2002;6(2):182–97.CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on. 2002;6(2):182–97.CrossRef
46.
go back to reference Agar A, Li S, Agarwal N, Coroneo MT, Hill MA. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res. 2006;1086:191–200.CrossRefPubMed Agar A, Li S, Agarwal N, Coroneo MT, Hill MA. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res. 2006;1086:191–200.CrossRefPubMed
47.
go back to reference Tan SZ, Sampat K, Rasool S, Nolan D: Unilateral acute angle closure glaucoma. BMJ case reports 2013, 2013:bcr2012007836 Tan SZ, Sampat K, Rasool S, Nolan D: Unilateral acute angle closure glaucoma. BMJ case reports 2013, 2013:bcr2012007836
48.
go back to reference Huang JF, Zhou LH, Wang H, Luo J, Zeng LP, Xiong K, et al. Distribution of thrombospondins and their neuronal receptor alpha 2 beta 1 in the rat retina. Exp Eye Res. 2013;111:36–49.CrossRefPubMed Huang JF, Zhou LH, Wang H, Luo J, Zeng LP, Xiong K, et al. Distribution of thrombospondins and their neuronal receptor alpha 2 beta 1 in the rat retina. Exp Eye Res. 2013;111:36–49.CrossRefPubMed
49.
go back to reference Guan FJ, Han X, Mao HJ, Wagner C, Yeni YN, Yang KH. Application of Optimization Methodology and Specimen-Specific Finite Element Models for Investigating Material Properties of Rat Skull. Ann Biomed Eng. 2011;39(1):85–95.CrossRefPubMed Guan FJ, Han X, Mao HJ, Wagner C, Yeni YN, Yang KH. Application of Optimization Methodology and Specimen-Specific Finite Element Models for Investigating Material Properties of Rat Skull. Ann Biomed Eng. 2011;39(1):85–95.CrossRefPubMed
50.
go back to reference Hu JW, Klinich KD, Miller CS, Nazmi G, Pearlman MD, Schneider LW, et al. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J Biomech. 2009;42(15):2528–34.CrossRefPubMed Hu JW, Klinich KD, Miller CS, Nazmi G, Pearlman MD, Schneider LW, et al. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J Biomech. 2009;42(15):2528–34.CrossRefPubMed
52.
go back to reference Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res. 1998;784(1–2):100–4.CrossRefPubMed Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res. 1998;784(1–2):100–4.CrossRefPubMed
53.
go back to reference Urcola JH, Hernandez M, Vecino E. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res. 2006;83(2):429–37.CrossRefPubMed Urcola JH, Hernandez M, Vecino E. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res. 2006;83(2):429–37.CrossRefPubMed
54.
go back to reference Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol. 1995;23(2):85–91.CrossRefPubMed Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol. 1995;23(2):85–91.CrossRefPubMed
55.
go back to reference Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1993;34(2):395–400.PubMed Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1993;34(2):395–400.PubMed
56.
go back to reference Cui Q, Tang LS, Hu B, So KF, Yip HK. Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Invest Ophthalmol Vis Sci. 2002;43(6):1954–64.PubMed Cui Q, Tang LS, Hu B, So KF, Yip HK. Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Invest Ophthalmol Vis Sci. 2002;43(6):1954–64.PubMed
57.
go back to reference Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol. 2004;58(3):341–54.CrossRefPubMed Rudzinski M, Wong TP, Saragovi HU. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol. 2004;58(3):341–54.CrossRefPubMed
58.
go back to reference Hof PR, Lee PY, Yeung G, Wang RF, Podos SM, Morrison JH. Glutamate receptor subunit GluR2 and NMDAR1 immunoreactivity in the retina of macaque monkeys with experimental glaucoma does not identify vulnerable neurons. Exp Neurol. 1998;153(2):234–41.CrossRefPubMed Hof PR, Lee PY, Yeung G, Wang RF, Podos SM, Morrison JH. Glutamate receptor subunit GluR2 and NMDAR1 immunoreactivity in the retina of macaque monkeys with experimental glaucoma does not identify vulnerable neurons. Exp Neurol. 1998;153(2):234–41.CrossRefPubMed
59.
go back to reference Dijk F, Kraal-Muller E, Kamphuis W. Ischemia-induced changes of AMPA-type glutamate receptor subunit expression pattern in the rat retina: a real-time quantitative PCR study. Invest Ophthalmol Vis Sci. 2004;45(1):330–41.CrossRefPubMed Dijk F, Kraal-Muller E, Kamphuis W. Ischemia-induced changes of AMPA-type glutamate receptor subunit expression pattern in the rat retina: a real-time quantitative PCR study. Invest Ophthalmol Vis Sci. 2004;45(1):330–41.CrossRefPubMed
61.
go back to reference Wax MB, Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp Eye Res. 2009;88(4):825–30.CrossRefPubMed Wax MB, Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp Eye Res. 2009;88(4):825–30.CrossRefPubMed
62.
go back to reference Tezel G. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci. 2009;50(3):1001–12.CrossRefPubMed Tezel G. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci. 2009;50(3):1001–12.CrossRefPubMed
63.
go back to reference Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28(46):12085–96.CrossRefPubMedPubMedCentral Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci. 2008;28(46):12085–96.CrossRefPubMedPubMedCentral
64.
go back to reference Tezel G, Hernandez R, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol. 2000;118(4):511–8.CrossRefPubMed Tezel G, Hernandez R, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol. 2000;118(4):511–8.CrossRefPubMed
65.
go back to reference Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol. 2009;8(2):85–98.CrossRefPubMed Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol. 2009;8(2):85–98.CrossRefPubMed
66.
go back to reference Gefen A, Shalom R, Elad D, Mandel Y. Biomechanical analysis of the keratoconic cornea. J Mech Behav Biomed Mater. 2009;2(3):224–36.CrossRefPubMed Gefen A, Shalom R, Elad D, Mandel Y. Biomechanical analysis of the keratoconic cornea. J Mech Behav Biomed Mater. 2009;2(3):224–36.CrossRefPubMed
Metadata
Title
Study on establishment and mechanics application of finite element model of bovine eye
Authors
Yan-Hui Cui
Ju-Fang Huang
Si-Ying Cheng
Wei Wei
Lei Shang
Na Li
Kun Xiong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2015
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-015-0073-4

Other articles of this Issue 1/2015

BMC Ophthalmology 1/2015 Go to the issue