Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Research article

Structure and mechanical properties of high-weight-bearing and low-weight-bearing areas of hip cartilage at the micro- and nano-levels

Authors: Jiang-Bo Guo, Ting Liang, Yan-Jun Che, Hui-Lin Yang, Zong-Ping Luo

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Articular cartilage has a high-weight-bearing area and a low-weight-bearing area, the macroscopic elastic moduli of the two regions are different. Chondrocytes are affected by the applied force at the microscopic level. Currently, the modulus of the two areas at the micro and nano levels is unknown, and studies on the relationship between macro-, micro- and nano-scale elastic moduli are limited. Such information may be important for further understanding of cartilage mechanics. Moreover, the surface morphology, proteoglycan content, and micro and nano structure of the two areas, which influences the mechanical properties of cartilage should be discussed.

Methods

Safranin-O/Fast Green staining was used to evaluate the surface morphology and semi-quantify proteoglycan content of porcine femoral head cartilage between the two weight-bearing areas. The unconfined compression test was used to determine the macro elastic modulus. Atomic force microscope was used to measure the micro and nano compressive elastic modulus as well as the nano structure. Scanning electron microscope was employed to evaluate the micro structure.

Results

No significant differences in the fibrillation index were observed between two areas (P = 0.5512). The Safranin-O index of the high-weight-bearing area was significantly higher than that of the low-weight-bearing area (P = 0.0387). The compressive elastic modulus of the high-weight-bearing area at the macro and micro level was significantly higher than that of the low-weight-bearing area (P = 0.0411 for macro-scale, and P = 0.0001 for micro-scale), while no statistically significant differences were observed in the elastic modulus of collagen fibrils at the nano level (P = 0.8544). The density of the collagen fibers was significantly lower in the high-weight-bearing area (P = 0.0177). No significant differences were observed in the structure and diameter of the collagen fibers between the two areas (P = 0.7361).

Conclusions

A higher proteoglycan content correlated with a higher compressive elastic modulus of the high-weight-bearing area at the micro level than that of the low-weight-bearing area, which was consistent with the trend observed from the macroscopic compressive elastic modulus. The weight-bearing level was not associated with the elastic modulus of individual collagen fibers and the diameter at the nano level. The micro structure of cartilage may influence the macro- and micro-scale elastic modulus.
Literature
1.
go back to reference Rydell N. Biomechanics of the hip-joint. Clin Orthop Relat Res. 1973;92:6–15.CrossRef Rydell N. Biomechanics of the hip-joint. Clin Orthop Relat Res. 1973;92:6–15.CrossRef
2.
go back to reference Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng Part B Rev. 2011;17(4):213–27.CrossRef Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng Part B Rev. 2011;17(4):213–27.CrossRef
3.
go back to reference Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res. 2004;423:17–26.CrossRef Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res. 2004;423:17–26.CrossRef
4.
go back to reference Li J, Wang Q, Jin Z, Williams S, Fisher J, Wilcox RK. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proc Inst Mech Eng H. 2014;228(6):547–55.CrossRef Li J, Wang Q, Jin Z, Williams S, Fisher J, Wilcox RK. Experimental validation of a new biphasic model of the contact mechanics of the porcine hip. Proc Inst Mech Eng H. 2014;228(6):547–55.CrossRef
5.
go back to reference Pawaskar SS, Grosland NM, Ingham E, Fisher J, Jin Z. Hemiarthroplasty of hip joint: an experimental validation using porcine acetabulum. J Biomech. 2011;44(8):1536–42.CrossRef Pawaskar SS, Grosland NM, Ingham E, Fisher J, Jin Z. Hemiarthroplasty of hip joint: an experimental validation using porcine acetabulum. J Biomech. 2011;44(8):1536–42.CrossRef
6.
go back to reference Toyoda E, Sato M, Takahashi T, Maehara M, Okada E, Wasai S, et al. Transcriptomic and proteomic analyses reveal the potential mode of action of chondrocyte sheets in hyaline cartilage regeneration. Int J Mol Sci. 2019;21(1):149.CrossRef Toyoda E, Sato M, Takahashi T, Maehara M, Okada E, Wasai S, et al. Transcriptomic and proteomic analyses reveal the potential mode of action of chondrocyte sheets in hyaline cartilage regeneration. Int J Mol Sci. 2019;21(1):149.CrossRef
7.
go back to reference Won Y, Lee GS, Kim SB, Kim SJ, Yang KH. Osteochondral autograft from the Ipsilateral femoral head by surgical dislocation for treatment of femoral head fracture dislocation: a case report. Yonsei Med J. 2016;57(6):1527–30.CrossRef Won Y, Lee GS, Kim SB, Kim SJ, Yang KH. Osteochondral autograft from the Ipsilateral femoral head by surgical dislocation for treatment of femoral head fracture dislocation: a case report. Yonsei Med J. 2016;57(6):1527–30.CrossRef
8.
go back to reference Nam D, Shindle MK, Buly RL, Kelly BT, Lorich DG. Traumatic osteochondral injury of the femoral head treated by mosaicplasty: a report of two cases. HSS J. 2010;6(2):228–34.CrossRef Nam D, Shindle MK, Buly RL, Kelly BT, Lorich DG. Traumatic osteochondral injury of the femoral head treated by mosaicplasty: a report of two cases. HSS J. 2010;6(2):228–34.CrossRef
9.
go back to reference Ahsan T, Sah RL. Biomechanics of integrative cartilage repair. Osteoarthr Cartil. 1999;7(1):29–40.CrossRef Ahsan T, Sah RL. Biomechanics of integrative cartilage repair. Osteoarthr Cartil. 1999;7(1):29–40.CrossRef
10.
go back to reference Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001;391(Suppl):S295–305.CrossRef Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001;391(Suppl):S295–305.CrossRef
11.
go back to reference Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4(4):379–92.CrossRef Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4(4):379–92.CrossRef
12.
go back to reference Athanasiou KA, Agarwal A, Muffoletto A, Dzida FJ, Constantinides G, Clem M. Biomechanical properties of hip cartilage in experimental animal models. Clin Orthop Relat Res. 1995;316:254–66.CrossRef Athanasiou KA, Agarwal A, Muffoletto A, Dzida FJ, Constantinides G, Clem M. Biomechanical properties of hip cartilage in experimental animal models. Clin Orthop Relat Res. 1995;316:254–66.CrossRef
13.
go back to reference Karchner JP, Yousefi F, Bitman SR, Darvish K, Pleshko N. Non-destructive spectroscopic assessment of high and low weight bearing articular cartilage correlates with mechanical properties. Cartilage. 2019;10(4):480–90.CrossRef Karchner JP, Yousefi F, Bitman SR, Darvish K, Pleshko N. Non-destructive spectroscopic assessment of high and low weight bearing articular cartilage correlates with mechanical properties. Cartilage. 2019;10(4):480–90.CrossRef
14.
go back to reference Kempson GE, Spivey CJ, Swanson SA, Freeman MA. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4(6):597–609.CrossRef Kempson GE, Spivey CJ, Swanson SA, Freeman MA. Patterns of cartilage stiffness on normal and degenerate human femoral heads. J Biomech. 1971;4(6):597–609.CrossRef
15.
go back to reference Swann AC, Seedhom BB. The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol. 1993;32(1):16–25.CrossRef Swann AC, Seedhom BB. The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol. 1993;32(1):16–25.CrossRef
16.
go back to reference Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, et al. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng. 2009;37(5):847–59.CrossRef Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, et al. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng. 2009;37(5):847–59.CrossRef
17.
go back to reference Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays. 1995;17(12):1039–48.CrossRef Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays. 1995;17(12):1039–48.CrossRef
18.
go back to reference Pizzo AM, Kokini K, Vaughn LC, Waisner BZ, Voytik-Harbin SL. Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J Appl Physiol (1985). 2005;98(5):1909–21.CrossRef Pizzo AM, Kokini K, Vaughn LC, Waisner BZ, Voytik-Harbin SL. Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J Appl Physiol (1985). 2005;98(5):1909–21.CrossRef
19.
go back to reference Sanchez-Adams J, Wilusz RE, Guilak F. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res. 2013;31(8):1218–25.CrossRef Sanchez-Adams J, Wilusz RE, Guilak F. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res. 2013;31(8):1218–25.CrossRef
20.
go back to reference Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr Cartil. 2001;9(6):582–92.CrossRef Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr Cartil. 2001;9(6):582–92.CrossRef
21.
go back to reference Antons J, Marascio MGM, Nohava J, Martin R, Applegate LA, Bourban PE, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med. 2018;29(5):57.CrossRef Antons J, Marascio MGM, Nohava J, Martin R, Applegate LA, Bourban PE, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med. 2018;29(5):57.CrossRef
22.
go back to reference Pastoureau P, Leduc S, Chomel A, De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized Guinea pig model of osteoarthritis. Osteoarthr Cartil. 2003;11(6):412–23.CrossRef Pastoureau P, Leduc S, Chomel A, De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized Guinea pig model of osteoarthritis. Osteoarthr Cartil. 2003;11(6):412–23.CrossRef
23.
go back to reference Raya JG, Arnoldi AP, Weber DL, Filidoro L, Dietrich O, Adam-Neumair S, et al. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy. MAGMA. 2011;24(4):247–58.CrossRef Raya JG, Arnoldi AP, Weber DL, Filidoro L, Dietrich O, Adam-Neumair S, et al. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy. MAGMA. 2011;24(4):247–58.CrossRef
24.
go back to reference Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35(7):903–9.CrossRef Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 2002;35(7):903–9.CrossRef
25.
go back to reference Zopf DA, Flanagan CL, Nasser HB, Mitsak AG, Huq FS, Rajendran V, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–8.CrossRef Zopf DA, Flanagan CL, Nasser HB, Mitsak AG, Huq FS, Rajendran V, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–8.CrossRef
26.
go back to reference Liang T, Che YJ, Chen X, Li HT, Yang HL, Luo ZP. Nano and micro biomechanical alterations of annulus fibrosus after in situ immobilization revealed by atomic force microscopy. J Orthop Res. 2019;37(1):232–8.CrossRef Liang T, Che YJ, Chen X, Li HT, Yang HL, Luo ZP. Nano and micro biomechanical alterations of annulus fibrosus after in situ immobilization revealed by atomic force microscopy. J Orthop Res. 2019;37(1):232–8.CrossRef
27.
go back to reference Nakano T. NaOH cell maceration/scanning electron microscopic studies on the connective tissue core in the incisive portion of the mouse hard palate. Auris Nasus Larynx. 1995;22(1):29–37.CrossRef Nakano T. NaOH cell maceration/scanning electron microscopic studies on the connective tissue core in the incisive portion of the mouse hard palate. Auris Nasus Larynx. 1995;22(1):29–37.CrossRef
28.
go back to reference Reginato Gde S, Bolina Cde S, Watanabe IS, Ciena AP. Three-dimensional aspects of the lingual papillae and their connective tissue cores in the tongue of rats: a scanning electron microscope study. ScientificWorldJournal. 2014;2014:841879.PubMed Reginato Gde S, Bolina Cde S, Watanabe IS, Ciena AP. Three-dimensional aspects of the lingual papillae and their connective tissue cores in the tongue of rats: a scanning electron microscope study. ScientificWorldJournal. 2014;2014:841879.PubMed
29.
go back to reference Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Toyras J, Jurvelin JS. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression. J Orthop Res. 2006;24(4):690–9.CrossRef Kiviranta P, Rieppo J, Korhonen RK, Julkunen P, Toyras J, Jurvelin JS. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression. J Orthop Res. 2006;24(4):690–9.CrossRef
30.
go back to reference Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthr Cartil. 2015;23(12):2158–66.CrossRef Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthr Cartil. 2015;23(12):2158–66.CrossRef
31.
go back to reference Quirk NP, Lopez De Padilla C, De La Vega RE, Coenen MJ, Tovar A, Evans CH, et al. Effects of freeze-thaw on the biomechanical and structural properties of the rat Achilles tendon. J Biomech. 2018;81:52–7.CrossRef Quirk NP, Lopez De Padilla C, De La Vega RE, Coenen MJ, Tovar A, Evans CH, et al. Effects of freeze-thaw on the biomechanical and structural properties of the rat Achilles tendon. J Biomech. 2018;81:52–7.CrossRef
32.
go back to reference Imer R, Akiyama T, de Rooij NF, Stolz M, Aebi U, Friederich NF, et al. The measurement of biomechanical properties of porcine articular cartilage using atomic force microscopy. Arch Histol Cytol. 2009;72(4–5):251–9.CrossRef Imer R, Akiyama T, de Rooij NF, Stolz M, Aebi U, Friederich NF, et al. The measurement of biomechanical properties of porcine articular cartilage using atomic force microscopy. Arch Histol Cytol. 2009;72(4–5):251–9.CrossRef
33.
go back to reference Changoor A, Nelea M, Methot S, Tran-Khanh N, Chevrier A, Restrepo A, et al. Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies. Osteoarthr Cartil. 2011;19(12):1458–68.CrossRef Changoor A, Nelea M, Methot S, Tran-Khanh N, Chevrier A, Restrepo A, et al. Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies. Osteoarthr Cartil. 2011;19(12):1458–68.CrossRef
34.
go back to reference Cone SG, Warren PB, Fisher MB. Rise of the pigs: utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng Part C Methods. 2017;23(11):763–80.CrossRef Cone SG, Warren PB, Fisher MB. Rise of the pigs: utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng Part C Methods. 2017;23(11):763–80.CrossRef
35.
go back to reference Franke O, Goken M, Meyers MA, Durst K, Hodge AM. Dynamic nanoindentation of articular porcine cartilage. Mat Sci Eng C-Mater. 2011;31(4):789–95.CrossRef Franke O, Goken M, Meyers MA, Durst K, Hodge AM. Dynamic nanoindentation of articular porcine cartilage. Mat Sci Eng C-Mater. 2011;31(4):789–95.CrossRef
36.
go back to reference Taylor SD, Tsiridis E, Ingham E, Jin Z, Fisher J, Williams S. Comparison of human and animal femoral head chondral properties and geometries. Proc Inst Mech Eng H. 2012;226(1):55–62.CrossRef Taylor SD, Tsiridis E, Ingham E, Jin Z, Fisher J, Williams S. Comparison of human and animal femoral head chondral properties and geometries. Proc Inst Mech Eng H. 2012;226(1):55–62.CrossRef
Metadata
Title
Structure and mechanical properties of high-weight-bearing and low-weight-bearing areas of hip cartilage at the micro- and nano-levels
Authors
Jiang-Bo Guo
Ting Liang
Yan-Jun Che
Hui-Lin Yang
Zong-Ping Luo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03468-y

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue