Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 7/2018

01-07-2018 | Glaucoma

Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography

Authors: Florian S. M. Edlinger, Laura M. Schrems-Hoesl, Christian Y. Mardin, Robert Laemmer, Friedrich E. Kruse, Wolfgang A. Schrems

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 7/2018

Login to get access

Abstract

Purpose

Assessment of the diagnostic ability of segmented macular inner retinal layer thickness and peripapillary retinal nerve fiber layer (pRNFL) measured by spectral-domain optical coherence tomography (SD-OCT) in patients with normal-tension (NT) and high-tension (HT) perimetric and preperimetric glaucoma.

Methods

The 212 participants included 45 healthy subjects, 55 patients with ocular hypertension, 56 patients with preperimetric glaucoma, and 56 patients with perimetric glaucoma. The preperimetric and perimetric groups were further subdivided into NT and HT groups. Sectoral and global thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (mGCL), inner plexiform layer (mIPL), ganglion cell complex (mGCC), and pRNFL were measured using SD-OCT (Spectralis, Heidelberg Engineering, Germany). Diagnostic performance was ascertained by sectoral and global comparison of the sensitivities at specificity ≥ 95%.

Results

For all layers, the largest thickness decrease was reported in the HT perimetric group. In all groups, the sensitivities of mGCL showed a comparable diagnostic value to pRNFL in order to distinguish between healthy subjects and glaucoma patients. In the perimetric group, mGCL (85.7%) exhibited higher sensitivities than mRNFL (78.6%) and mGCC (78.6%). Both mRNFL and pRNFL demonstrated equal diagnostic performance in the HT perimetric group (88.5 and 96.2%), in the NT groups, mRNFL was inferior to all other layers.

Conclusion

The sensitivities of mGCL and mRNFL were comparable to the sensitivities of pRNFL. In clinical application, mGCL and mRNFL, with a focus on the temporal and inferior sectors, may provide a convincing supplementation to pRNFL.

Clinical Trial Registration

Erlangen Glaucoma Registry www.​clinicaltrials.​gov ID: NCT00494923
Appendix
Available only for authorised users
Literature
1.
go back to reference Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090CrossRefPubMed Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090CrossRefPubMed
3.
go back to reference Hyman L, Wu SY, Connell AM et al (2001) Prevalence and causes of visual impairment in the Barbados Eye Sudy. Ophthalmology 108:1751–1756CrossRefPubMed Hyman L, Wu SY, Connell AM et al (2001) Prevalence and causes of visual impairment in the Barbados Eye Sudy. Ophthalmology 108:1751–1756CrossRefPubMed
4.
go back to reference Cho HK, Kee C (2014) Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol 59:434–447CrossRefPubMed Cho HK, Kee C (2014) Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol 59:434–447CrossRefPubMed
5.
go back to reference Kaas MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713CrossRef Kaas MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713CrossRef
6.
go back to reference Langenegger SJ, Funk J, Töteberg-Harms M (2011) Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 52:3338–3344CrossRefPubMed Langenegger SJ, Funk J, Töteberg-Harms M (2011) Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 52:3338–3344CrossRefPubMed
7.
go back to reference Wu H, de Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 20:470–476CrossRefPubMedPubMedCentral Wu H, de Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 20:470–476CrossRefPubMedPubMedCentral
8.
go back to reference Bressler SB, Edwards AR, Chalam KV et al (2014) Reproducibility of spectral domain optical coherence tomography retinal thickness measurements and conversion to equivalent time domain metrics in diabetic macular edema. JAMA Ophthalmol 132:113–122 Bressler SB, Edwards AR, Chalam KV et al (2014) Reproducibility of spectral domain optical coherence tomography retinal thickness measurements and conversion to equivalent time domain metrics in diabetic macular edema. JAMA Ophthalmol 132:113–122
9.
go back to reference Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329CrossRefPubMedPubMedCentral Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral-domain optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52:8323–8329CrossRefPubMedPubMedCentral
10.
go back to reference Zeimer R, Shahidi M, Mori M, Zou S, Asrani S (1996) A new method for rapid mapping of the retinal thickness at posterior pole. Invest Ophthalmol Vis Sci 37:1994–2001PubMed Zeimer R, Shahidi M, Mori M, Zou S, Asrani S (1996) A new method for rapid mapping of the retinal thickness at posterior pole. Invest Ophthalmol Vis Sci 37:1994–2001PubMed
11.
go back to reference Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231CrossRefPubMed Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231CrossRefPubMed
12.
13.
go back to reference Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46CrossRefPubMed Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46CrossRefPubMed
14.
go back to reference Giovannini A, Amato G, Mariotti C (2002) The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 236:34–36CrossRefPubMed Giovannini A, Amato G, Mariotti C (2002) The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 236:34–36CrossRefPubMed
15.
go back to reference Leung CK, Chan WM, Yung WH et al (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400CrossRefPubMed Leung CK, Chan WM, Yung WH et al (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400CrossRefPubMed
16.
go back to reference Guedes V, Schuman JS, Hertzmark E et al (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189CrossRefPubMedPubMedCentral Guedes V, Schuman JS, Hertzmark E et al (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189CrossRefPubMedPubMedCentral
17.
go back to reference Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefPubMed Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefPubMed
18.
go back to reference Kotowski J, Folio LS, Wollstein G et al (2012) Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 96:1420–1425CrossRefPubMedPubMedCentral Kotowski J, Folio LS, Wollstein G et al (2012) Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 96:1420–1425CrossRefPubMedPubMedCentral
19.
go back to reference Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699CrossRefPubMed Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699CrossRefPubMed
20.
go back to reference Kim NR, Lee ES, Seong GJ et al (2011) Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 95:1115–1121CrossRefPubMed Kim NR, Lee ES, Seong GJ et al (2011) Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 95:1115–1121CrossRefPubMed
21.
go back to reference Garas A, Vargha P, Holló G (2011) Diagnostic accuracy of nerve fiber layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond) 25:57–65CrossRef Garas A, Vargha P, Holló G (2011) Diagnostic accuracy of nerve fiber layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond) 25:57–65CrossRef
22.
go back to reference Tan O, Chopra V, Lu AT et al (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314CrossRefPubMedPubMedCentral Tan O, Chopra V, Lu AT et al (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314CrossRefPubMedPubMedCentral
23.
go back to reference Thonginnetra O, Greenstein VC, Chu D, Liebmann JM, Ritch R, Hood DC (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19:151–157CrossRefPubMedPubMedCentral Thonginnetra O, Greenstein VC, Chu D, Liebmann JM, Ritch R, Hood DC (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19:151–157CrossRefPubMedPubMedCentral
24.
go back to reference Ahrlich KG, De Moraes CG, Teng CC et al (2010) Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. Invest Ophthalmol Vis Sci 51:1458–1463CrossRefPubMed Ahrlich KG, De Moraes CG, Teng CC et al (2010) Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. Invest Ophthalmol Vis Sci 51:1458–1463CrossRefPubMed
25.
go back to reference Kiriyama N, Ando A, Fukui C et al (2003) A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension. Graefes Arch Clin Exp Ophthalmol 241:541–545CrossRefPubMed Kiriyama N, Ando A, Fukui C et al (2003) A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension. Graefes Arch Clin Exp Ophthalmol 241:541–545CrossRefPubMed
26.
go back to reference Lewis RA, Hayreh SS, Phelps CD (1983) Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 96:148–152CrossRefPubMed Lewis RA, Hayreh SS, Phelps CD (1983) Optic disk and visual field correlations in primary open-angle and low-tension glaucoma. Am J Ophthalmol 96:148–152CrossRefPubMed
27.
go back to reference King D, Drances SM, Douglas G, Schulter M, Wijsman K (1986) Comparison of visual field defects in normal-tension and high-tension glaucoma. Am J Ophthalmol 101:204–207CrossRefPubMed King D, Drances SM, Douglas G, Schulter M, Wijsman K (1986) Comparison of visual field defects in normal-tension and high-tension glaucoma. Am J Ophthalmol 101:204–207CrossRefPubMed
28.
go back to reference Wessel JM, Horn FK, Tornow RP et al (2013) Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:3613–3620CrossRefPubMed Wessel JM, Horn FK, Tornow RP et al (2013) Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:3613–3620CrossRefPubMed
29.
go back to reference McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157CrossRefPubMed McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157CrossRefPubMed
30.
go back to reference Khanal S, Davey PG, Racette L, Madhu T (2016) Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optom 9:118–125CrossRefPubMed Khanal S, Davey PG, Racette L, Madhu T (2016) Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optom 9:118–125CrossRefPubMed
31.
go back to reference Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010CrossRefPubMed Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010CrossRefPubMed
32.
go back to reference Lu AT, Wang M, Varma R et al (2008) Combining nerve fiber layer to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 115:1352–1357CrossRefPubMedPubMedCentral Lu AT, Wang M, Varma R et al (2008) Combining nerve fiber layer to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 115:1352–1357CrossRefPubMedPubMedCentral
34.
go back to reference Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990CrossRefPubMed Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990CrossRefPubMed
35.
go back to reference Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21CrossRefPubMed Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21CrossRefPubMed
36.
go back to reference Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805CrossRefPubMed Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805CrossRefPubMed
37.
go back to reference Kim YJ, Kang MH, Cho HY, Lim HW, Seong M (2014) Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol 58:244–251CrossRefPubMed Kim YJ, Kang MH, Cho HY, Lim HW, Seong M (2014) Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol 58:244–251CrossRefPubMed
38.
go back to reference Pazos M, Dyrda AA, Biarnés M et al (2017) Diagnostic accuracy of Spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 124:1218–1228CrossRefPubMed Pazos M, Dyrda AA, Biarnés M et al (2017) Diagnostic accuracy of Spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 124:1218–1228CrossRefPubMed
40.
go back to reference Martinez-de-la-Casa JM, Cifuentes-Canorea P, Berrozpe C et al (2014) Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. Invest Ophthalmol Vis Sci 55:8843–8848CrossRef Martinez-de-la-Casa JM, Cifuentes-Canorea P, Berrozpe C et al (2014) Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. Invest Ophthalmol Vis Sci 55:8843–8848CrossRef
Metadata
Title
Structural changes of macular inner retinal layers in early normal-tension and high-tension glaucoma by spectral-domain optical coherence tomography
Authors
Florian S. M. Edlinger
Laura M. Schrems-Hoesl
Christian Y. Mardin
Robert Laemmer
Friedrich E. Kruse
Wolfgang A. Schrems
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 7/2018
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-018-3944-6

Other articles of this Issue 7/2018

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2018 Go to the issue