Skip to main content
Top
Published in: Neurological Sciences 12/2021

01-12-2021 | Stroke | Review Article

Influence of the gut microbiome on inflammatory and immune response after stroke

Authors: Qin Huang, Jian Xia

Published in: Neurological Sciences | Issue 12/2021

Login to get access

Abstract

Researches on the bidirectional communications between the gut microbiota and brain, termed the gut-brain axis, often bring about discoveries and drive the development of medicine and biology for stroke. Following stroke, the gut-brain axis is perturbed significantly on dysbiotic gut microbiome, intestinal dysfunction, enteric nervous system, increased gut permeability, and activated immune cells in the gut, which in turn results in infiltration of pro-inflammatory cells or bacterial toxins into brain tissue through impaired blood–brain barrier (BBB), finally exacerbated brain infarction. Herein, we illuminate the changes in the immune system and highlight the possible mechanisms of the gut microbiota to regulate inflammatory and immune processes in the context of stroke. We conducted a systematic literatures search in PubMed, Web of Science, Embase, and guideline-specific databases until May 2021 using the following key terms: gut microbiota, stroke, immune, and inflammation.
Literature
1.
go back to reference Liesz A et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199PubMedCrossRef Liesz A et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199PubMedCrossRef
2.
go back to reference Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950PubMedCrossRef Shichita T et al (2009) Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950PubMedCrossRef
3.
go back to reference Osadchiy V, Martin CR, Mayer EA (2019) The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol 17(2):322–332PubMedCrossRef Osadchiy V, Martin CR, Mayer EA (2019) The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol 17(2):322–332PubMedCrossRef
4.
go back to reference Crapser J et al (2016) Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging-Us 8(5):1049–1063CrossRef Crapser J et al (2016) Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging-Us 8(5):1049–1063CrossRef
5.
go back to reference Chen R et al (2019) Puerariae Lobatae Radix with Chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers. J Nutr Biochem 65:101–114PubMedCrossRef Chen R et al (2019) Puerariae Lobatae Radix with Chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers. J Nutr Biochem 65:101–114PubMedCrossRef
6.
go back to reference Chen R et al (2019) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403–104403PubMedCrossRef Chen R et al (2019) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403–104403PubMedCrossRef
7.
go back to reference Yin J, et al (2015) Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4(11):e002699 Yin J, et al (2015) Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4(11):e002699
9.
go back to reference Yamashiro K et al (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12(2):e0171521PubMedPubMedCentralCrossRef Yamashiro K et al (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12(2):e0171521PubMedPubMedCentralCrossRef
10.
11.
go back to reference Wang W et al (2018) The characteristics analysis of intestinal microecology on cerebral infarction patients and its correlation with apolipoprotein E. Medicine (Baltimore) 97(41):e12805CrossRef Wang W et al (2018) The characteristics analysis of intestinal microecology on cerebral infarction patients and its correlation with apolipoprotein E. Medicine (Baltimore) 97(41):e12805CrossRef
12.
go back to reference Winek K et al (2016) Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 47(5):1354–1363PubMedPubMedCentralCrossRef Winek K et al (2016) Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 47(5):1354–1363PubMedPubMedCentralCrossRef
13.
14.
16.
go back to reference Lee J, et al. (2020) Gut microbiota-derived short-chain fatty acids promote post-stroke recovery in aged mice. Circ Res 127(4):453–465 Lee J, et al. (2020) Gut microbiota-derived short-chain fatty acids promote post-stroke recovery in aged mice. Circ Res 127(4):453–465
17.
go back to reference Zhang P et al (2021) Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radic Biol Med 162:104–117PubMedCrossRef Zhang P et al (2021) Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radic Biol Med 162:104–117PubMedCrossRef
18.
go back to reference Benakis C et al (2020) Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke 51(6):1844–1854PubMedPubMedCentralCrossRef Benakis C et al (2020) Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke 51(6):1844–1854PubMedPubMedCentralCrossRef
19.
go back to reference Zeng X, et al (2019) Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 9:4 Zeng X, et al (2019) Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 9:4
20.
go back to reference Haak BW, et al (2020) Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study. Transl Stroke Res 12(4):581–592 Haak BW, et al (2020) Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study. Transl Stroke Res 12(4):581–592
22.
go back to reference Ji W et al (2017) Analysis of intestinal microbial communities of cerebral infarction and ischemia patients based on high throughput sequencing technology and glucose and lipid metabolism. Mol Med Rep 16(4):5413–5417PubMedPubMedCentralCrossRef Ji W et al (2017) Analysis of intestinal microbial communities of cerebral infarction and ischemia patients based on high throughput sequencing technology and glucose and lipid metabolism. Mol Med Rep 16(4):5413–5417PubMedPubMedCentralCrossRef
23.
go back to reference Huang L, et al. (2019) Analysis of microbiota in elderly patients with acute cerebral infarction. PeerJ 7:e6928 Huang L, et al. (2019) Analysis of microbiota in elderly patients with acute cerebral infarction. PeerJ 7:e6928
24.
go back to reference Li N, et al (2019) Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 19(1):191 Li N, et al (2019) Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 19(1):191
25.
go back to reference Fan W-T et al (2016) Diversity of intestinal microflora in patients with depression after stroke. Nan Fang Yi Ke Da Xue Xue Bao 36(10):1305–1311PubMed Fan W-T et al (2016) Diversity of intestinal microflora in patients with depression after stroke. Nan Fang Yi Ke Da Xue Xue Bao 36(10):1305–1311PubMed
26.
go back to reference Stanley D et al (2016) Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med 22(11):1277–1284PubMedCrossRef Stanley D et al (2016) Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med 22(11):1277–1284PubMedCrossRef
27.
go back to reference Nan Y, et al. (2019) Diversity analysis of intestinal flora in patients with ischemic stroke at different stages. Chongqing Medicine 1671–8348 Nan Y, et al. (2019) Diversity analysis of intestinal flora in patients with ischemic stroke at different stages. Chongqing Medicine 1671–8348
28.
go back to reference Caso JR et al (2009) Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 296(4):R979–R985PubMedCrossRef Caso JR et al (2009) Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 296(4):R979–R985PubMedCrossRef
29.
go back to reference Jeon J, et al (2020) Dynamic changes in the gut microbiome at the acute stage of ischemic stroke in a pig model. Front Neurosci 14: 587986 Jeon J, et al (2020) Dynamic changes in the gut microbiome at the acute stage of ischemic stroke in a pig model. Front Neurosci 14: 587986
30.
go back to reference Chen Y et al (2019) Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys. Front Neurol 10:661PubMedPubMedCentralCrossRef Chen Y et al (2019) Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys. Front Neurol 10:661PubMedPubMedCentralCrossRef
31.
go back to reference Xu K, et al (2021) Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut Xu K, et al (2021) Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut
32.
go back to reference Cai W, et al (2021) Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating ROR gamma t. Sci Adv 7(4) Cai W, et al (2021) Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating ROR gamma t. Sci Adv 7(4)
33.
go back to reference Matsuura J et al (2019) Analysis of gut microbiota in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Journal of Clinical Biochemistry and Nutrition 65(3):240–244PubMedPubMedCentralCrossRef Matsuura J et al (2019) Analysis of gut microbiota in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Journal of Clinical Biochemistry and Nutrition 65(3):240–244PubMedPubMedCentralCrossRef
34.
go back to reference Ling Y et al (2020) Structural change of gut microbiota in patients with post-stroke comorbid cognitive impairment and depression and Its correlation with clinical features. J Alzheimers Dis 77(4):1595–1608PubMedCrossRef Ling Y et al (2020) Structural change of gut microbiota in patients with post-stroke comorbid cognitive impairment and depression and Its correlation with clinical features. J Alzheimers Dis 77(4):1595–1608PubMedCrossRef
36.
go back to reference Sadler R et al (2017) Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav Immun 66:23–30PubMedCrossRef Sadler R et al (2017) Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav Immun 66:23–30PubMedCrossRef
37.
go back to reference Sadler R et al (2019) Short-chain fatty acids improve post-stroke recovery via immunological mechanisms. J Neurosci 40(5):1162–1173 Sadler R et al (2019) Short-chain fatty acids improve post-stroke recovery via immunological mechanisms. J Neurosci 40(5):1162–1173
38.
go back to reference Houlden A et al (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20PubMedPubMedCentralCrossRef Houlden A et al (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20PubMedPubMedCentralCrossRef
40.
go back to reference Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–22 Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–22
43.
go back to reference Zhang F et al (2020) Protective effect of Tong-Qiao-Huo-Xue decoction on inflammatory injury caused by intestinal microbial disorders in stroke rats. Biol Pharm Bull 43(5):788–800PubMedCrossRef Zhang F et al (2020) Protective effect of Tong-Qiao-Huo-Xue decoction on inflammatory injury caused by intestinal microbial disorders in stroke rats. Biol Pharm Bull 43(5):788–800PubMedCrossRef
44.
go back to reference Vinolo MA et al (2009) Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin Sci (Lond) 117(9):331–338CrossRef Vinolo MA et al (2009) Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin Sci (Lond) 117(9):331–338CrossRef
47.
go back to reference Brandsma E et al (2019) A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 124(1):94–100PubMedCrossRef Brandsma E et al (2019) A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 124(1):94–100PubMedCrossRef
48.
go back to reference Goncalves P, Araujo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24(3):558–572PubMedCrossRef Goncalves P, Araujo JR, Di Santo JP (2018) A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 24(3):558–572PubMedCrossRef
49.
go back to reference Saemann MD et al (2000) Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 14(15):2380–2382PubMedCrossRef Saemann MD et al (2000) Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 14(15):2380–2382PubMedCrossRef
50.
go back to reference Millard AL et al (2002) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130(2):245–255PubMedPubMedCentralCrossRef Millard AL et al (2002) Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130(2):245–255PubMedPubMedCentralCrossRef
51.
go back to reference Martinez FO et al (2008) Macrophage activation and polarization. Frontiers in Bioscience-Landmark 13:453–461CrossRef Martinez FO et al (2008) Macrophage activation and polarization. Frontiers in Bioscience-Landmark 13:453–461CrossRef
52.
go back to reference Haghikia A et al (2018) Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38(9):2225–2235PubMedPubMedCentralCrossRef Haghikia A et al (2018) Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38(9):2225–2235PubMedPubMedCentralCrossRef
53.
go back to reference Sun J et al (2016) Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett 613:30–35PubMedCrossRef Sun J et al (2016) Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett 613:30–35PubMedCrossRef
54.
go back to reference Sun J et al (2016) Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res 1642:180–188PubMedCrossRef Sun J et al (2016) Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res 1642:180–188PubMedCrossRef
55.
56.
go back to reference Zhou Z, et al (2020) Sodium butyrate attenuated neuronal apoptosis via GPR41/Gbetagamma/PI3K/Akt pathway after MCAO in rats. J Cereb Blood Flow Metab 41(2):267–281 Zhou Z, et al (2020) Sodium butyrate attenuated neuronal apoptosis via GPR41/Gbetagamma/PI3K/Akt pathway after MCAO in rats. J Cereb Blood Flow Metab 41(2):267–281
57.
go back to reference Peng J et al (2018) Interaction between gut microbiome and cardiovascular disease. Life Sci 214:153–157PubMedCrossRef Peng J et al (2018) Interaction between gut microbiome and cardiovascular disease. Life Sci 214:153–157PubMedCrossRef
59.
go back to reference Tan C et al (2020) Dynamic changes and prognostic value of gut microbiota-dependent trimethylamine-N-oxide in acute ischemic stroke. Front Neurol 11:29PubMedPubMedCentralCrossRef Tan C et al (2020) Dynamic changes and prognostic value of gut microbiota-dependent trimethylamine-N-oxide in acute ischemic stroke. Front Neurol 11:29PubMedPubMedCentralCrossRef
60.
go back to reference Wu C et al (2018) Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology 90(15):E128–E1290CrossRef Wu C et al (2018) Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology 90(15):E128–E1290CrossRef
62.
63.
go back to reference Miao J et al (2015) Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6:6498PubMedCrossRef Miao J et al (2015) Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6:6498PubMedCrossRef
65.
go back to reference Pathak P et al (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68(4):1574–1588PubMedCrossRef Pathak P et al (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68(4):1574–1588PubMedCrossRef
66.
go back to reference Fiorucci S et al (2010) Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res 49(2):171–185PubMedCrossRef Fiorucci S et al (2010) Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res 49(2):171–185PubMedCrossRef
68.
go back to reference Chevre R, Silvestre-Roig C, Soehnlein O (2018) Nutritional modulation of innate immunity: the fat-bile-gut connection. Trends Endocrinol Metab 29(10):686–698PubMedCrossRef Chevre R, Silvestre-Roig C, Soehnlein O (2018) Nutritional modulation of innate immunity: the fat-bile-gut connection. Trends Endocrinol Metab 29(10):686–698PubMedCrossRef
69.
go back to reference Guo C et al (2016) Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45(4):802–816PubMedCrossRef Guo C et al (2016) Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45(4):802–816PubMedCrossRef
70.
go back to reference Alishahi M, et al (2019) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 14(6):574–591 Alishahi M, et al (2019) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 14(6):574–591
71.
go back to reference Rothhammer V, et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 22(6): p. 586-+ Rothhammer V, et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 22(6): p. 586-+
72.
go back to reference Cason CA, et al (2018) Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(5): 1552-+ Cason CA, et al (2018) Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(5): 1552-+
73.
go back to reference Natividad JM et al (2018) Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28(5):737-749.e4PubMedCrossRef Natividad JM et al (2018) Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28(5):737-749.e4PubMedCrossRef
74.
go back to reference Darlington LG et al (2007) Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 26(8):2211–2221PubMedCrossRef Darlington LG et al (2007) Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 26(8):2211–2221PubMedCrossRef
75.
go back to reference Veldhoen M et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109PubMedCrossRef Veldhoen M et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109PubMedCrossRef
76.
go back to reference Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020PubMedCrossRef Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020PubMedCrossRef
77.
go back to reference Singh V et al (2016) HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid Redox Signal 24(12):635–651PubMedCrossRef Singh V et al (2016) HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid Redox Signal 24(12):635–651PubMedCrossRef
78.
go back to reference McCusker RH, Kelley KW (2012) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216(1):84–98CrossRef McCusker RH, Kelley KW (2012) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216(1):84–98CrossRef
79.
go back to reference Park MJ, et al (2019) Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl Stroke Res 11(4):812–830 Park MJ, et al (2019) Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl Stroke Res 11(4):812–830
81.
go back to reference Mayerhofer R et al (2017) Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain Behav Immun 60:174–187PubMedCrossRef Mayerhofer R et al (2017) Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain Behav Immun 60:174–187PubMedCrossRef
82.
go back to reference Nemet I et al (2020) A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180(5):862.e22-877.e22CrossRef Nemet I et al (2020) A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180(5):862.e22-877.e22CrossRef
83.
go back to reference Meng Y, et al (2019) Effects of different diets on microbiota in the small intestine mucus and weight regulation in rats. Sci Rep 9(1):8500 Meng Y, et al (2019) Effects of different diets on microbiota in the small intestine mucus and weight regulation in rats. Sci Rep 9(1):8500
85.
go back to reference Faraco G et al (2018) Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat Neurosci 21(2):240–249PubMedPubMedCentralCrossRef Faraco G et al (2018) Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat Neurosci 21(2):240–249PubMedPubMedCentralCrossRef
87.
go back to reference Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(1):35–56PubMedCrossRef Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(1):35–56PubMedCrossRef
88.
go back to reference Allen JM et al (2018) Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9(2):115–130PubMedCrossRef Allen JM et al (2018) Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9(2):115–130PubMedCrossRef
89.
go back to reference Allen JM et al (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50(4):747–757PubMedCrossRef Allen JM et al (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50(4):747–757PubMedCrossRef
91.
94.
go back to reference Scheiman J et al (2019) Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25(7):1104–1109PubMedPubMedCentralCrossRef Scheiman J et al (2019) Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25(7):1104–1109PubMedPubMedCentralCrossRef
95.
go back to reference Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46 Suppl 2: p. S58–61; discussion S144–51 Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46 Suppl 2: p. S58–61; discussion S144–51
96.
go back to reference Smits HH et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267PubMedCrossRef Smits HH et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267PubMedCrossRef
97.
go back to reference Rezazadeh L et al (2019) Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition 62:162–168PubMedCrossRef Rezazadeh L et al (2019) Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition 62:162–168PubMedCrossRef
98.
go back to reference Sabico S et al (2019) Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clinical nutrition (Edinburgh, Scotland) 38(4):1561–1569CrossRef Sabico S et al (2019) Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clinical nutrition (Edinburgh, Scotland) 38(4):1561–1569CrossRef
101.
go back to reference Gibson GR et al (2007) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275CrossRef Gibson GR et al (2007) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275CrossRef
102.
103.
go back to reference McLoughlin RF et al (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106(3):930–945PubMed McLoughlin RF et al (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106(3):930–945PubMed
104.
go back to reference Zhang JC et al (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol 54(5):3652–3664PubMedCrossRef Zhang JC et al (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol 54(5):3652–3664PubMedCrossRef
105.
go back to reference Dou Z et al (2019) Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol 39(6):883–898PubMedCrossRef Dou Z et al (2019) Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol 39(6):883–898PubMedCrossRef
106.
go back to reference Liu Y et al (2020) The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites. J Alzheimers Dis 73(4):1455–1466PubMedCrossRef Liu Y et al (2020) The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites. J Alzheimers Dis 73(4):1455–1466PubMedCrossRef
107.
go back to reference Wong AC, Levy M (2019) New approaches to microbiome-based therapies. mSystems 4(3):e00122-19 Wong AC, Levy M (2019) New approaches to microbiome-based therapies. mSystems 4(3):e00122-19
108.
109.
go back to reference Westendorp WF, et al (2011) Post-stroke infection: a systematic review and meta-analysis. Bmc Neurol 11:110 Westendorp WF, et al (2011) Post-stroke infection: a systematic review and meta-analysis. Bmc Neurol 11:110
110.
go back to reference Westendorp WF et al (2015) The Preventive Antibiotics in Stroke Study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet 385(9977):1519–1526PubMedCrossRef Westendorp WF et al (2015) The Preventive Antibiotics in Stroke Study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet 385(9977):1519–1526PubMedCrossRef
112.
go back to reference Burrello C et al (2018) Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun 9(1):5184PubMedPubMedCentralCrossRef Burrello C et al (2018) Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun 9(1):5184PubMedPubMedCentralCrossRef
113.
114.
go back to reference Winek K, Dirnagl U, Meisel A (2016) The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 13(4):762–774PubMedPubMedCentralCrossRef Winek K, Dirnagl U, Meisel A (2016) The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 13(4):762–774PubMedPubMedCentralCrossRef
Metadata
Title
Influence of the gut microbiome on inflammatory and immune response after stroke
Authors
Qin Huang
Jian Xia
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 12/2021
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05603-6

Other articles of this Issue 12/2021

Neurological Sciences 12/2021 Go to the issue