Skip to main content
Top
Published in: BMC Neurology 1/2022

01-12-2022 | Stroke | Study protocol

Effects of high frequency rTMS of contralesional dorsal premotor cortex in severe subcortical chronic stroke: protocol of a randomized controlled trial with multimodal neuroimaging assessments

Authors: Jiali Li, Hewei Wang, Yujian Yuan, Yunhui Fan, Fan Liu, Jingjing Zhu, Qing Xu, Lan Chen, Miao Guo, Zhaoying Ji, Yun Chen, Qiurong Yu, Tianhao Gao, Yan Hua, Mingxia Fan, Limin Sun

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Previous studies have revealed that low frequency repeated transcranial magnetic stimulation (rTMS) on the contralesional primary motor cortex (cM1) is less effective in severe stroke patients with poor neural structural reserve than in patients with highly reserved descending motor pathway. This may be attributed to the fact that secondary motor cortex, especially contralesional dorsal premotor cortex (cPMd), might play an important compensatory role in the motor function recovery of severely affected upper extremity. The main purpose of this study is to compare the effectiveness of low frequency rTMS on cM1 and high frequency rTMS on cPMd in subcortical chronic stroke patients with severe hemiplegia. By longitudinal analysis of multimodal neuroimaging data, we hope to elucidate the possible mechanism of brain reorganization following different treatment regimens of rTMS therapy, and to determine the cut-off of stimulation strategy selection based on the degree of neural structural reserve.

Methods/design

The study will be a single-blinded randomized controlled trial involving a total of 60 subcortical chronic stroke patients with severe upper limb motor impairments. All patients will receive 3 weeks of conventional rehabilitation treatment, while they will be divided into three groups and receive different rTMS treatments: cM1 low frequency rTMS (n = 20), cPMd high frequency rTMS (n = 20), and sham stimulation group (n = 20). Clinical functional assessment, multimodal functional MRI (fMRI) scanning, and electrophysiological measurement will be performed before intervention, 3 weeks after intervention, and 4 weeks after the treatment, respectively.

Discussion

This will be the first study to compare the effects of low-frequency rTMS of cM1 and high-frequency rTMS of cPMd. The outcome of this study will provide a theoretical basis for clarifying the bimodal balance-recovery model of stroke, and provide a strategy for individualized rTMS treatment for stroke in future studies and clinical practice.

Trial registration

Chinese Clinical Trial Registry, ChiCTR1900027399. Registered on 12 Nov 2019, http://​www.​chictr.​org.​cn/​showproj.​aspx?​proj=​43686.
Literature
2.
go back to reference Le Q, Qu Y, Tao Y, Zhu S. Effects of repetitive transcranial magnetic stimulation on hand function recovery and excitability of the motor cortex after stroke: a meta analysis [J]. Am J Phys Med Rehabil. 2014;93(5):422–30.PubMedCrossRef Le Q, Qu Y, Tao Y, Zhu S. Effects of repetitive transcranial magnetic stimulation on hand function recovery and excitability of the motor cortex after stroke: a meta analysis [J]. Am J Phys Med Rehabil. 2014;93(5):422–30.PubMedCrossRef
3.
go back to reference Smith MC, Stinear CM. Transcranial magnetic stimulation (TMS) in stroke: ready for clinical practice [J]? J Clin Neurosci. 2016;31:10–4.PubMedCrossRef Smith MC, Stinear CM. Transcranial magnetic stimulation (TMS) in stroke: ready for clinical practice [J]? J Clin Neurosci. 2016;31:10–4.PubMedCrossRef
4.
go back to reference Brion JP, Demeurisse G, Capon A. Evidence of cortical reorganization in hemiparetic patients [J]. Stroke. 1989;20(8):1079–84.PubMedCrossRef Brion JP, Demeurisse G, Capon A. Evidence of cortical reorganization in hemiparetic patients [J]. Stroke. 1989;20(8):1079–84.PubMedCrossRef
5.
go back to reference Cao Y, D'Olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis [J]. Stroke. 1998;29(1):112–22.PubMedCrossRef Cao Y, D'Olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis [J]. Stroke. 1998;29(1):112–22.PubMedCrossRef
6.
go back to reference Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke [J]. Lancet Neurol. 2006;5(8):708–12.PubMedCrossRef Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke [J]. Lancet Neurol. 2006;5(8):708–12.PubMedCrossRef
7.
go back to reference Ackerley SJ, Byblow WD, Barber PA, MacDonald H, McIntyre-Robinson A, Stinear CM. Primed physical therapy enhances recovery of upper limb function in chronic stroke patients [J]. Neurorehabil Neural Repair. 2016;30(4):339–48.PubMedCrossRef Ackerley SJ, Byblow WD, Barber PA, MacDonald H, McIntyre-Robinson A, Stinear CM. Primed physical therapy enhances recovery of upper limb function in chronic stroke patients [J]. Neurorehabil Neural Repair. 2016;30(4):339–48.PubMedCrossRef
8.
go back to reference Kim DH, Shin JC, Jung S, Jung TM, Kim DY. Effects of intermittent theta burst stimulation on spasticity after stroke [J]. Neuroreport. 2015;26(10):561–6.PubMedPubMedCentralCrossRef Kim DH, Shin JC, Jung S, Jung TM, Kim DY. Effects of intermittent theta burst stimulation on spasticity after stroke [J]. Neuroreport. 2015;26(10):561–6.PubMedPubMedCentralCrossRef
9.
go back to reference Huang GL, Tang XL, Huang Y. Effects of 1Hz low frequency repetitive transcranial magnetic stimulation on upper limb spasm and motor function in hemiplegia after stroke: a meta-analysis [J]. Chin J Rehabil Med. 2018;33(6):701–9. Huang GL, Tang XL, Huang Y. Effects of 1Hz low frequency repetitive transcranial magnetic stimulation on upper limb spasm and motor function in hemiplegia after stroke: a meta-analysis [J]. Chin J Rehabil Med. 2018;33(6):701–9.
10.
go back to reference Zhao XL, Liu TL, Zhou YX, Zhang LX. The effect of repetitive transcranial magnetic stimulation on dyskinesia in stroke patients [J]. Chin J Rehabil Med. 2018;33(7):800–5. Zhao XL, Liu TL, Zhou YX, Zhang LX. The effect of repetitive transcranial magnetic stimulation on dyskinesia in stroke patients [J]. Chin J Rehabil Med. 2018;33(7):800–5.
11.
go back to reference Barros Galvão SC, Costa B, dos Santos R, Borba dos Santos P, Cabral ME, Monte-Silva K. Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial [J]. Arch Phys Med Rehabil. 2014;95(2):222–9.PubMedCrossRef Barros Galvão SC, Costa B, dos Santos R, Borba dos Santos P, Cabral ME, Monte-Silva K. Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial [J]. Arch Phys Med Rehabil. 2014;95(2):222–9.PubMedCrossRef
12.
go back to reference Seniów J, Bilik M, Leśniak M, Waldowski K, Iwański S, Członkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, doubleblind, placebo-controlled study [J]. Neurorehabi Neural Repair. 2012;26(9):1072–9.CrossRef Seniów J, Bilik M, Leśniak M, Waldowski K, Iwański S, Członkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, doubleblind, placebo-controlled study [J]. Neurorehabi Neural Repair. 2012;26(9):1072–9.CrossRef
13.
go back to reference Hsu WY, Cheng CH, Liao KK, et al. Effects of repetitive Transcranial magnetic stimulation on motor functions in patients with stroke a Meta-analysis[J]. Stroke. 2012;43(7):1849.PubMedCrossRef Hsu WY, Cheng CH, Liao KK, et al. Effects of repetitive Transcranial magnetic stimulation on motor functions in patients with stroke a Meta-analysis[J]. Stroke. 2012;43(7):1849.PubMedCrossRef
14.
go back to reference Harvey RL, Dylan E, Kari D, et al. Randomized sham-controlled trial of navigated repetitive Transcranial magnetic stimulation for motor recovery in stroke: the NICHE trial[J]. Stroke. 2018;49(9):2138–46.PubMedCrossRef Harvey RL, Dylan E, Kari D, et al. Randomized sham-controlled trial of navigated repetitive Transcranial magnetic stimulation for motor recovery in stroke: the NICHE trial[J]. Stroke. 2018;49(9):2138–46.PubMedCrossRef
15.
go back to reference Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Combining theta burst stimulation with training after subcortical stroke [J]. Stroke. 2010;41(7):1568–72.PubMedCrossRef Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Combining theta burst stimulation with training after subcortical stroke [J]. Stroke. 2010;41(7):1568–72.PubMedCrossRef
16.
go back to reference Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke [J]. Ann Neurol. 2009;66(3):298–309.PubMedCrossRef Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke [J]. Ann Neurol. 2009;66(3):298–309.PubMedCrossRef
17.
go back to reference Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke [J]. Cochrane Database Syst Rev. 2013;31(5):CD008862. Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke [J]. Cochrane Database Syst Rev. 2013;31(5):CD008862.
18.
go back to reference Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke [J]. Front Psychiatry. 2012;3:1–27.CrossRef Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke [J]. Front Psychiatry. 2012;3:1–27.CrossRef
20.
go back to reference Dionísio A, Duarte IC, Patrício M, Castelo-Branco M. The use of repetitive Transcranial magnetic stimulation for stroke rehabilitation: a systematic review [J]. J Stroke Cerebrovasc Dis. 2018;27(1):1–31.PubMedCrossRef Dionísio A, Duarte IC, Patrício M, Castelo-Branco M. The use of repetitive Transcranial magnetic stimulation for stroke rehabilitation: a systematic review [J]. J Stroke Cerebrovasc Dis. 2018;27(1):1–31.PubMedCrossRef
21.
go back to reference Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018) [published correction appears in Clin Neurophysiol. 2020 May;131(5):1168-1169]. Clin Neurophysiol. 2020;131(2):474–528. Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018) [published correction appears in Clin Neurophysiol. 2020 May;131(5):1168-1169]. Clin Neurophysiol. 2020;131(2):474–528.
22.
go back to reference Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke [J]. Ann Neurol. 2004;55(3):400–9.PubMedCrossRef Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke [J]. Ann Neurol. 2004;55(3):400–9.PubMedCrossRef
23.
go back to reference Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation [J]. Nat Rev Neurol. 2014;10(10):597–608.PubMedCrossRef Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation [J]. Nat Rev Neurol. 2014;10(10):597–608.PubMedCrossRef
24.
go back to reference Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations [J]. Neuroimage. 2010;52(3):1059–69.PubMedCrossRef Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations [J]. Neuroimage. 2010;52(3):1059–69.PubMedCrossRef
25.
go back to reference Zeiler SR, Gibson EM, Hoesch RE, Li MY, Worley PF, O’Brien RJ, et al. Medial premotor cortex shows a reduction in inhibitory markers and mediates recovery in a mouse model of focal stroke [J]. Stroke. 2013;44(2):483–9.PubMedPubMedCentralCrossRef Zeiler SR, Gibson EM, Hoesch RE, Li MY, Worley PF, O’Brien RJ, et al. Medial premotor cortex shows a reduction in inhibitory markers and mediates recovery in a mouse model of focal stroke [J]. Stroke. 2013;44(2):483–9.PubMedPubMedCentralCrossRef
26.
go back to reference Fang PC, Stepniewska I, Kaas JH. Corpus callosum connections of subdivisions of motor and premotor cortex, and frontal eye field in a prosimian primate, Otolemur garnetti. J Comp Neurol. 2008;508(4):565–78.PubMedCrossRef Fang PC, Stepniewska I, Kaas JH. Corpus callosum connections of subdivisions of motor and premotor cortex, and frontal eye field in a prosimian primate, Otolemur garnetti. J Comp Neurol. 2008;508(4):565–78.PubMedCrossRef
27.
go back to reference Kurata K. Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience. 2018;382:127–43.PubMedCrossRef Kurata K. Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience. 2018;382:127–43.PubMedCrossRef
28.
go back to reference Kuypers HGJM. Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology - the nervous system II. Bethesda: American Physiological Society; 1981. p. 597–666. Kuypers HGJM. Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology - the nervous system II. Bethesda: American Physiological Society; 1981. p. 597–666.
29.
go back to reference Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey [J]. Brain. 2012;135(7):2277–89.PubMedPubMedCentralCrossRef Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey [J]. Brain. 2012;135(7):2277–89.PubMedPubMedCentralCrossRef
30.
go back to reference Zhao Z, Wu J, Fan M, Yin D, Tang C, Gong J, et al. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke [J]. Hum Brain Mapp. 2018;39(8):3388–97.PubMedPubMedCentralCrossRef Zhao Z, Wu J, Fan M, Yin D, Tang C, Gong J, et al. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke [J]. Hum Brain Mapp. 2018;39(8):3388–97.PubMedPubMedCentralCrossRef
31.
go back to reference Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke [J]. Proc Natl Acad Sci U S A. 2002;99:14518–23.PubMedPubMedCentralCrossRef Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke [J]. Proc Natl Acad Sci U S A. 2002;99:14518–23.PubMedPubMedCentralCrossRef
32.
go back to reference Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI [J]. J Neurosci. 2010;30(36):11926–37.PubMedPubMedCentralCrossRef Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI [J]. J Neurosci. 2010;30(36):11926–37.PubMedPubMedCentralCrossRef
33.
go back to reference Sankarasubramanian V, Machado AG, Conforto AB, Potter-Baker KA, Cunningham DA, Varnerin NM, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation [J]. Clin Neurophysiol. 2017;128(6):892–902.PubMedPubMedCentralCrossRef Sankarasubramanian V, Machado AG, Conforto AB, Potter-Baker KA, Cunningham DA, Varnerin NM, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation [J]. Clin Neurophysiol. 2017;128(6):892–902.PubMedPubMedCentralCrossRef
34.
go back to reference Du J, Yang F, Hu J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin. 2019;21:101620. Du J, Yang F, Hu J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin. 2019;21:101620.
35.
go back to reference Zhao Z, Wang X, Fan M, Yin D, Sun L, Jia J, et al. Altered effective connectivity of the primary motor cortex in stroke: a resting-state fMRI study with granger causality analysis [J]. PLoS One. 2016;11(11):e0166210.PubMedPubMedCentralCrossRef Zhao Z, Wang X, Fan M, Yin D, Sun L, Jia J, et al. Altered effective connectivity of the primary motor cortex in stroke: a resting-state fMRI study with granger causality analysis [J]. PLoS One. 2016;11(11):e0166210.PubMedPubMedCentralCrossRef
36.
go back to reference Yin D, Yan X, Fan M, Hu Y, Men W, Sun L, et al. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function [J]. AJNR Am J Neuroradiol. 2013;34(7):1341–7.PubMedPubMedCentralCrossRef Yin D, Yan X, Fan M, Hu Y, Men W, Sun L, et al. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function [J]. AJNR Am J Neuroradiol. 2013;34(7):1341–7.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Zheng X, Sun L, Yin D, Jia J, Zhao Z, Jiang Y, et al. The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients [J]. Neuroradiology. 2016;58(4):417–27.PubMedCrossRef Zheng X, Sun L, Yin D, Jia J, Zhao Z, Jiang Y, et al. The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients [J]. Neuroradiology. 2016;58(4):417–27.PubMedCrossRef
39.
go back to reference Sun L, Yin D, Zhu Y, Fan M, Zang L, Wu Y, et al. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fmri study [J]. Neuroradiology. 2013;55(7):913–25.PubMedCrossRef Sun L, Yin D, Zhu Y, Fan M, Zang L, Wu Y, et al. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fmri study [J]. Neuroradiology. 2013;55(7):913–25.PubMedCrossRef
40.
go back to reference Yin D, Song F, Xu D, Peterson BS, Sun L, Men W, et al. Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke [J]. PLoS One. 2012;7(12):e52727.PubMedPubMedCentralCrossRef Yin D, Song F, Xu D, Peterson BS, Sun L, Men W, et al. Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke [J]. PLoS One. 2012;7(12):e52727.PubMedPubMedCentralCrossRef
41.
go back to reference Zhao Z, Tang C, Yin D, Wu J, Gong J, Sun L, et al. Frequency-specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function [J]. Hum Brain Mapp. 2018;39(11):4373–84.PubMedPubMedCentralCrossRef Zhao Z, Tang C, Yin D, Wu J, Gong J, Sun L, et al. Frequency-specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function [J]. Hum Brain Mapp. 2018;39(11):4373–84.PubMedPubMedCentralCrossRef
42.
go back to reference Yin D, Song F, Xu D, Sun L, Men W, Zang L, et al. Altered topological properties of the cortical motor-related network in patients with subcortical stroke revealed by graph theoretical analysis [J]. Hum Brain Mapp. 2014;35(7):3343–59.PubMedCrossRef Yin D, Song F, Xu D, Sun L, Men W, Zang L, et al. Altered topological properties of the cortical motor-related network in patients with subcortical stroke revealed by graph theoretical analysis [J]. Hum Brain Mapp. 2014;35(7):3343–59.PubMedCrossRef
43.
go back to reference Yin D, Luo Y, Song F, Xu D, Peterson BS, Sun L, et al. Functional reorganization associated with outcome in hand function after stroke revealed by regional homogeneity [J]. Neuroradiology. 2013;55(6):761–70.PubMedCrossRef Yin D, Luo Y, Song F, Xu D, Peterson BS, Sun L, et al. Functional reorganization associated with outcome in hand function after stroke revealed by regional homogeneity [J]. Neuroradiology. 2013;55(6):761–70.PubMedCrossRef
44.
go back to reference Sun L, Wu Y, Yin D, Fan M, Zang L, Hu Y, et al. The effects of motor imagery training on upper-extremity functional reorganization in stroke patients: a fMRI study [J]. Chin J Rehabil Med. 2015;30(12):1217 -1222, 1242. Sun L, Wu Y, Yin D, Fan M, Zang L, Hu Y, et al. The effects of motor imagery training on upper-extremity functional reorganization in stroke patients: a fMRI study [J]. Chin J Rehabil Med. 2015;30(12):1217 -1222, 1242.
45.
go back to reference Shao F, Yin D, Jia J, Zhao Z, Wang X, Zheng X, et al. The effect of subcortical stroke on motor imagery-related cortex functional connectivity [J]. Chin J Rehabil Med. 2016;31(2):133–9. Shao F, Yin D, Jia J, Zhao Z, Wang X, Zheng X, et al. The effect of subcortical stroke on motor imagery-related cortex functional connectivity [J]. Chin J Rehabil Med. 2016;31(2):133–9.
Metadata
Title
Effects of high frequency rTMS of contralesional dorsal premotor cortex in severe subcortical chronic stroke: protocol of a randomized controlled trial with multimodal neuroimaging assessments
Authors
Jiali Li
Hewei Wang
Yujian Yuan
Yunhui Fan
Fan Liu
Jingjing Zhu
Qing Xu
Lan Chen
Miao Guo
Zhaoying Ji
Yun Chen
Qiurong Yu
Tianhao Gao
Yan Hua
Mingxia Fan
Limin Sun
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02629-x

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue