Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Stroke | Study protocol

Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol

Authors: Candice Maenza, Robert L. Sainburg, Rini Varghese, Brooke Dexheimer, Marika Demers, Lauri Bishop, Shanie A. L. Jayasinghe, David A. Wagstaff, Carolee Winstein, For the IPSI Investigative Team

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis.

Methods

We have designed an intervention (“IPSI”) to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site – Penn State College of Medicine, secondary site – University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence.

Discussion

The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms.

Trial Registration

This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397; date of registration: 08/16/2018).
Literature
1.
go back to reference Morris JH, van Wijck F, Joice S, Ogston SA, Cole I, MacWalter RS. A Comparison of Bilateral and Unilateral Upper-Limb Task Training in Early Poststroke Rehabilitation: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2008;89:1237–45.CrossRef Morris JH, van Wijck F, Joice S, Ogston SA, Cole I, MacWalter RS. A Comparison of Bilateral and Unilateral Upper-Limb Task Training in Early Poststroke Rehabilitation: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2008;89:1237–45.CrossRef
2.
go back to reference Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:1228–32.CrossRef Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:1228–32.CrossRef
3.
go back to reference Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain. 2013;136(Pt 4):1288–303.CrossRef Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain. 2013;136(Pt 4):1288–303.CrossRef
5.
go back to reference Maenza C, Good DC, Winstein CJ, Wagstaff DA, Sainburg RL. Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabil Neural Repair. 2020;34:39–50.CrossRef Maenza C, Good DC, Winstein CJ, Wagstaff DA, Sainburg RL. Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabil Neural Repair. 2020;34:39–50.CrossRef
6.
go back to reference Wetter S, Poole JL, Haaland KY. Functional implications of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil. 2005;86:776–81.CrossRef Wetter S, Poole JL, Haaland KY. Functional implications of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil. 2005;86:776–81.CrossRef
7.
go back to reference Chestnut C, Haaland KY. Functional Significance of Ipsilesional Motor Deficits After Unilateral Stroke. Arch Phys Med Rehabil. 2008;89:62–8.CrossRef Chestnut C, Haaland KY. Functional Significance of Ipsilesional Motor Deficits After Unilateral Stroke. Arch Phys Med Rehabil. 2008;89:62–8.CrossRef
8.
go back to reference Poole JL, Sadek J, Haaland KY. Ipsilateral Deficits in 1-Handed Shoe Tying After Left or Right Hemisphere Stroke. Arch Phys Med Rehabil. 2009;90:1800–5.CrossRef Poole JL, Sadek J, Haaland KY. Ipsilateral Deficits in 1-Handed Shoe Tying After Left or Right Hemisphere Stroke. Arch Phys Med Rehabil. 2009;90:1800–5.CrossRef
9.
go back to reference Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex. 2012;22:1407–19.CrossRef Schaefer SY, Mutha PK, Haaland KY, Sainburg RL. Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex. 2012;22:1407–19.CrossRef
10.
go back to reference Metrot J, Froger J, Hauret I, Mottet D, Van Dokkum L, Laffont I. Motor recovery of the ipsilesional upper limb in subacute stroke. Arch Phys Med Rehabil. 2013;94:2283–90.CrossRef Metrot J, Froger J, Hauret I, Mottet D, Van Dokkum L, Laffont I. Motor recovery of the ipsilesional upper limb in subacute stroke. Arch Phys Med Rehabil. 2013;94:2283–90.CrossRef
11.
go back to reference Sainburg RL, Maenza C, Winstein C, Good D. Motor lateralization provides a foundation for predicting and treating non-paretic arm motor deficits in stroke. In: Advances in Experimental Medicine and Biology. 2016. p. 257–72. Sainburg RL, Maenza C, Winstein C, Good D. Motor lateralization provides a foundation for predicting and treating non-paretic arm motor deficits in stroke. In: Advances in Experimental Medicine and Biology. 2016. p. 257–72.
12.
go back to reference Varghese R, Winstein CJ. Relationship Between Motor Capacity of the Contralesional and Ipsilesional Hand Depends on the Side of Stroke in Chronic Stroke Survivors With Mild-to-Moderate Impairment. Front Neurol. 2020;10:1340.CrossRef Varghese R, Winstein CJ. Relationship Between Motor Capacity of the Contralesional and Ipsilesional Hand Depends on the Side of Stroke in Chronic Stroke Survivors With Mild-to-Moderate Impairment. Front Neurol. 2020;10:1340.CrossRef
13.
go back to reference Maenza C, Wagstaff DA, Varghese R, Winstein C, Good DC, Sainburg RL. Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study. Front Hum Neurosci. 2021;15:133.CrossRef Maenza C, Wagstaff DA, Varghese R, Winstein C, Good DC, Sainburg RL. Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study. Front Hum Neurosci. 2021;15:133.CrossRef
14.
go back to reference Winstein CJ, Pohl RS. Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res. 1995;105:163–74.CrossRef Winstein CJ, Pohl RS. Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res. 1995;105:163–74.CrossRef
15.
go back to reference Rapin I, Tourk LM, Costa LD. Evaluation of the Purdue Pegboard as a Screening Test for Brain Damage. Dev Med Child Neurol. 1966;8:45–54.CrossRef Rapin I, Tourk LM, Costa LD. Evaluation of the Purdue Pegboard as a Screening Test for Brain Damage. Dev Med Child Neurol. 1966;8:45–54.CrossRef
16.
go back to reference Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M. Performance of the “unaffected” upper extremity of elderly stroke patients. Stroke. 1996;27:1564–70.CrossRef Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M. Performance of the “unaffected” upper extremity of elderly stroke patients. Stroke. 1996;27:1564–70.CrossRef
17.
go back to reference Schaefer SY, Haaland KY, Sainburg RL. Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia. 2009;47:2953–66.CrossRef Schaefer SY, Haaland KY, Sainburg RL. Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia. 2009;47:2953–66.CrossRef
18.
go back to reference Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Mot Behav. 2012;44:455–69.CrossRef Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Mot Behav. 2012;44:455–69.CrossRef
19.
go back to reference Rose DK, Winstein CJ. The co-ordination of bimanual rapid aiming movements following stroke. Clin Rehabil. 2005;19:452–62.CrossRef Rose DK, Winstein CJ. The co-ordination of bimanual rapid aiming movements following stroke. Clin Rehabil. 2005;19:452–62.CrossRef
20.
go back to reference York Haaland K, Delaney HD. Motor deficits after left or right hemisphere damage due to stroke or tumor. Neuropsychologia. 1981;19:17–27.CrossRef York Haaland K, Delaney HD. Motor deficits after left or right hemisphere damage due to stroke or tumor. Neuropsychologia. 1981;19:17–27.CrossRef
21.
go back to reference Sainburg RL, Schaefer S, Bagesteiro LB. Interlimb differences in trajectory and positional control mechanisms. Proc 25th Annu Int Conf IEEE Eng Med Biol Soc (IEEE Cat No03CH37439). 2003. Sainburg RL, Schaefer S, Bagesteiro LB. Interlimb differences in trajectory and positional control mechanisms. Proc 25th Annu Int Conf IEEE Eng Med Biol Soc (IEEE Cat No03CH37439). 2003.
22.
go back to reference Haaland KY, Schaefer SY, Knight RT, Adair J, Magalhaes A, Sadek J, et al. Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage. Exp Brain Res. 2009. Haaland KY, Schaefer SY, Knight RT, Adair J, Magalhaes A, Sadek J, et al. Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage. Exp Brain Res. 2009.
23.
go back to reference Coelho CJ, Przybyla A, Yadav V, Sainburg RL. Hemispheric differences in the control of limb dynamics: a link between arm performance asymmetries and arm selection patterns. J Neurophysiol. 2013;109:825–38.CrossRef Coelho CJ, Przybyla A, Yadav V, Sainburg RL. Hemispheric differences in the control of limb dynamics: a link between arm performance asymmetries and arm selection patterns. J Neurophysiol. 2013;109:825–38.CrossRef
24.
go back to reference Yadav V, Sainburg RL. Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience. 2011;196:153–67.CrossRef Yadav V, Sainburg RL. Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience. 2011;196:153–67.CrossRef
25.
go back to reference Duff SV, Sainburg RL. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res. 2007;179:551–61.CrossRef Duff SV, Sainburg RL. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Exp Brain Res. 2007;179:551–61.CrossRef
26.
go back to reference Mutha PK, Haaland KY, Sainburg RL. Rethinking Motor Lateralization: Specialized but Complementary Mechanisms for Motor Control of Each Arm. PLoS One. 2013;8.CrossRef Mutha PK, Haaland KY, Sainburg RL. Rethinking Motor Lateralization: Specialized but Complementary Mechanisms for Motor Control of Each Arm. PLoS One. 2013;8.CrossRef
27.
go back to reference Schaffer JE, Sarlegna FR, Sainburg RL. A rare case of deafferentation reveals an essential role of proprioception in bilateral coordination. Neuropsychologia. 2021;160:107969. Schaffer JE, Sarlegna FR, Sainburg RL. A rare case of deafferentation reveals an essential role of proprioception in bilateral coordination. Neuropsychologia. 2021;160:107969.
28.
go back to reference Przybyla A, Good DC, Sainburg RL. Dynamic dominance varies with handedness: Reduced interlimb asymmetries in left-handers. Exp Brain Res. 2012;216:419–31.CrossRef Przybyla A, Good DC, Sainburg RL. Dynamic dominance varies with handedness: Reduced interlimb asymmetries in left-handers. Exp Brain Res. 2012;216:419–31.CrossRef
29.
go back to reference Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130(Pt 8):2146–58.CrossRef Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130(Pt 8):2146–58.CrossRef
30.
go back to reference Tretriluxana J, Gordon J, Fisher BE, Winstein CJ. Hemisphere specific impairments in reach-to-grasp control after stroke: Effects of object size. Neurorehabil Neural Repair. 2009;23:679–91.CrossRef Tretriluxana J, Gordon J, Fisher BE, Winstein CJ. Hemisphere specific impairments in reach-to-grasp control after stroke: Effects of object size. Neurorehabil Neural Repair. 2009;23:679–91.CrossRef
31.
go back to reference Gresham GE, Duncan PW, Stason WB, Adams HP, Adelman AM, Alexander DN, et al. Post-stroke rehabilitation: Assessment, referral, and patient management. Quick Reference Guide for Clinicians, Number 16 — Penn State. J Pharmacoepidemiol. 1996;5:35–63. Gresham GE, Duncan PW, Stason WB, Adams HP, Adelman AM, Alexander DN, et al. Post-stroke rehabilitation: Assessment, referral, and patient management. Quick Reference Guide for Clinicians, Number 16 — Penn State. J Pharmacoepidemiol. 1996;5:35–63.
32.
go back to reference Guide for the Uniform Data Set for Medical Rehabilitation (including the FIM(TM) Instrument). State University of New York at Buffalo. 1997;Version 5.:14214–3007. Guide for the Uniform Data Set for Medical Rehabilitation (including the FIM(TM) Instrument). State University of New York at Buffalo. 1997;Version 5.:14214–3007.
33.
go back to reference Haaland KY, Flaherty D. The different types of limb apraxia errors made by patients with left vs. right hemisphere damage. Brain Cogn. 1984;3:370–84.CrossRef Haaland KY, Flaherty D. The different types of limb apraxia errors made by patients with left vs. right hemisphere damage. Brain Cogn. 1984;3:370–84.CrossRef
35.
go back to reference Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.PubMed Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.PubMed
38.
go back to reference Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabil Neural Repair. 2002;16:232–40.CrossRef Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabil Neural Repair. 2002;16:232–40.CrossRef
47.
go back to reference Hancock NJ, Collins K, Dorer C, Wolf SL, Bayley M, Pomeroy VM. Evidence-based practice ’ on-the-go’: Using ViaTherapy as a tool to enhance clinical decision making in upper limb rehabilitation after stroke, a quality improvement initiative. BMJ Open Qual. 2019;8. https://doi.org/10.1136/bmjoq-2018-000592. Hancock NJ, Collins K, Dorer C, Wolf SL, Bayley M, Pomeroy VM. Evidence-based practice ’ on-the-go’: Using ViaTherapy as a tool to enhance clinical decision making in upper limb rehabilitation after stroke, a quality improvement initiative. BMJ Open Qual. 2019;8. https://​doi.​org/​10.​1136/​bmjoq-2018-000592.
Metadata
Title
Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol
Authors
Candice Maenza
Robert L. Sainburg
Rini Varghese
Brooke Dexheimer
Marika Demers
Lauri Bishop
Shanie A. L. Jayasinghe
David A. Wagstaff
Carolee Winstein
For the IPSI Investigative Team
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Stroke
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02643-z

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue