Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

01-12-2020 | Stroke | Research

Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: a randomized controlled pilot trial

Authors: Vahid Esmaeili, Andréanne Juneau, Joseph-Omer Dyer, Anouk Lamontagne, Dahlia Kairy, Laurent Bouyer, Cyril Duclos

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Abstract

Background

Previous studies have assessed the effects of perturbation training on balance after stroke. However, the perturbations were either applied while standing or were small in amplitude during gait, which is not representative of the most common fall conditions. The perturbations were also combined with other challenges such as progressive increases in treadmill speed.

Objective

To determine the benefit of treadmill training with intense and unpredictable perturbations compared to treadmill walking-only training for dynamic balance and gait post-stroke.

Methods

Twenty-one individuals post-stroke with reduced dynamic balance abilities, with or without a history of fall and ability to walk on a treadmill without external support or a walking aid for at least 1 min were allocated to either an unpredictable gait perturbation (Perturb) group or a walking-only (NonPerturb) group through covariate adaptive randomization. Nine training sessions were conducted over 3 weeks. NonPerturb participants only walked on the treadmill but were offered perturbation training after the control intervention. Pre- and post-training evaluations included balance and gait abilities, maximal knee strength, balance confidence and community integration. Six-week phone follow-ups were conducted for balance confidence and community integration. Satisfaction with perturbation training was also assessed.

Results

With no baseline differences between groups (p > 0.075), perturbation training yielded large improvements in most variables in the Perturb (p < 0.05, Effect Size: ES > .46) group (n = 10) and the NonPerturb (p ≤ .089, ES > .45) group (n = 7 post-crossing), except for maximal strength (p > .23) in the NonPerturb group. Walking-only training in the NonPerturb group (n = 8, pre-crossing) mostly had no effect (p > .292, ES < .26), except on balance confidence (p = .063, ES = .46). The effects of the gait training were still present on balance confidence and community integration at follow-up. Satisfaction with the training program was high.

Conclusion

Intense and unpredictable gait perturbations have the potential to be an efficient component of training to improve balance abilities and community integration in individuals with chronic stroke. Retrospective registration: ClinicalTrials.​gov. March 18th, 2020. Identifier: NCT04314830.
Literature
1.
go back to reference Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after stroke. Int J Stroke. 2012;7(6):482–90.PubMedCrossRef Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after stroke. Int J Stroke. 2012;7(6):482–90.PubMedCrossRef
2.
go back to reference Garland SJ, Gray VL, Knorr S. Muscle activation patterns and postural control following stroke. Mot Control. 2009;13(4):387–411.CrossRef Garland SJ, Gray VL, Knorr S. Muscle activation patterns and postural control following stroke. Mot Control. 2009;13(4):387–411.CrossRef
3.
go back to reference Pollock C, Eng J, Garland S. Clinical measurement of walking balance in people post stroke: a systematic review. Clin Rehabil. 2011;25(8):693–708.PubMedCrossRef Pollock C, Eng J, Garland S. Clinical measurement of walking balance in people post stroke: a systematic review. Clin Rehabil. 2011;25(8):693–708.PubMedCrossRef
4.
5.
go back to reference Leroux A, Pinet H, Nadeau S. Task-oriented intervention in chronic stroke: changes in clinical and laboratory measures of balance and mobility. Am J Phys Med Rehabil. 2006;85(10):820–30.PubMedCrossRef Leroux A, Pinet H, Nadeau S. Task-oriented intervention in chronic stroke: changes in clinical and laboratory measures of balance and mobility. Am J Phys Med Rehabil. 2006;85(10):820–30.PubMedCrossRef
6.
go back to reference von Schroeder HP, Coutts RD, Lyden PD, Billings E Jr, Nickel VL. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32(1):25–31. von Schroeder HP, Coutts RD, Lyden PD, Billings E Jr, Nickel VL. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32(1):25–31.
7.
go back to reference Said CM, Goldie PA, Patla AE, Sparrow WA. Effect of stroke on step characteristics of obstacle crossing. Arch Phys Med Rehabil. 2001;82(12):1712–9.PubMedCrossRef Said CM, Goldie PA, Patla AE, Sparrow WA. Effect of stroke on step characteristics of obstacle crossing. Arch Phys Med Rehabil. 2001;82(12):1712–9.PubMedCrossRef
8.
go back to reference Sawacha Z, Carraro E, Contessa P, Guiotto A, Masiero S, Cobelli C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J Neuroeng Rehabil. 2013;10:95.PubMedPubMedCentralCrossRef Sawacha Z, Carraro E, Contessa P, Guiotto A, Masiero S, Cobelli C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J Neuroeng Rehabil. 2013;10:95.PubMedPubMedCentralCrossRef
9.
go back to reference Mansfield A, Aqui A, Centen A, Danells CJ, DePaul VG, Knorr S, et al. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial. BMC Neurol. 2015;15:87.PubMedPubMedCentralCrossRef Mansfield A, Aqui A, Centen A, Danells CJ, DePaul VG, Knorr S, et al. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial. BMC Neurol. 2015;15:87.PubMedPubMedCentralCrossRef
10.
go back to reference Weerdesteyn V, de Niet M, van Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–213.PubMedCrossRef Weerdesteyn V, de Niet M, van Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–213.PubMedCrossRef
11.
go back to reference Lubetzky-Vilnai A, Kartin D. The effect of balance training on balance performance in individuals poststroke: a systematic review. J Neurol Phys Ther. 2010;34(3):127–37.PubMedCrossRef Lubetzky-Vilnai A, Kartin D. The effect of balance training on balance performance in individuals poststroke: a systematic review. J Neurol Phys Ther. 2010;34(3):127–37.PubMedCrossRef
12.
go back to reference Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011;41(5):377–400.PubMedCrossRef Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011;41(5):377–400.PubMedCrossRef
13.
go back to reference Vearrier LA, Langan J, Shumway-Cook A, Woollacott M. An intensive massed practice approach to retraining balance post-stroke. Gait Posture. 2005;22(2):154–63.PubMedCrossRef Vearrier LA, Langan J, Shumway-Cook A, Woollacott M. An intensive massed practice approach to retraining balance post-stroke. Gait Posture. 2005;22(2):154–63.PubMedCrossRef
14.
go back to reference Marigold DS, Eng JJ, Dawson AS, Inglis JT, Harris JE, Gylfadóttir S. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke. J Am Geriatr Soc. 2005;53(3):416–23.PubMedPubMedCentralCrossRef Marigold DS, Eng JJ, Dawson AS, Inglis JT, Harris JE, Gylfadóttir S. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke. J Am Geriatr Soc. 2005;53(3):416–23.PubMedPubMedCentralCrossRef
15.
go back to reference Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987.PubMedPubMedCentralCrossRef Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987.PubMedPubMedCentralCrossRef
16.
go back to reference Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther. 1997;77(5):488–507.PubMedCrossRef Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther. 1997;77(5):488–507.PubMedCrossRef
17.
go back to reference Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls reduction among older adults: current evidence and implications for clinical practice. Geriatr Gerontol Int. 2017;17(12):2294–303.PubMedPubMedCentralCrossRef Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls reduction among older adults: current evidence and implications for clinical practice. Geriatr Gerontol Int. 2017;17(12):2294–303.PubMedPubMedCentralCrossRef
18.
go back to reference Pai YC, Bhatt TS. Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther. 2007;87(11):1478–91.PubMedCrossRef Pai YC, Bhatt TS. Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys Ther. 2007;87(11):1478–91.PubMedCrossRef
19.
go back to reference Mansfield A, Aqui A, Danells CJ, Knorr S, Centen A, DePaul VG, et al. Does perturbation-based balance training prevent falls among individuals with chronic stroke? A randomised controlled trial. Br Med J Open. 2018;8(8):e021510. Mansfield A, Aqui A, Danells CJ, Knorr S, Centen A, DePaul VG, et al. Does perturbation-based balance training prevent falls among individuals with chronic stroke? A randomised controlled trial. Br Med J Open. 2018;8(8):e021510.
20.
go back to reference Punt M, Bruijn SM, van de Port IG, de Rooij IJM, Wittink H, van Dieen JH. Does a perturbation-based gait intervention enhance gait stability in fall-prone stroke survivors? A pilot study. J Appl Biomech. 2019;35(3):173–81.PubMedCrossRef Punt M, Bruijn SM, van de Port IG, de Rooij IJM, Wittink H, van Dieen JH. Does a perturbation-based gait intervention enhance gait stability in fall-prone stroke survivors? A pilot study. J Appl Biomech. 2019;35(3):173–81.PubMedCrossRef
21.
go back to reference Handelzalts S, Kenner-Furman M, Gray G, Soroker N, Shani G, Melzer I. Effects of perturbation-based balance training in subacute persons with stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33(3):213–24.PubMedCrossRef Handelzalts S, Kenner-Furman M, Gray G, Soroker N, Shani G, Melzer I. Effects of perturbation-based balance training in subacute persons with stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33(3):213–24.PubMedCrossRef
22.
go back to reference Kumar C, Pathan NM. Effectiveness of manual perturbation exercises in improving balance, function and mobility in stroke patients: a randomized controlled trial. J Nov Physiother. 2016;6:284–92. Kumar C, Pathan NM. Effectiveness of manual perturbation exercises in improving balance, function and mobility in stroke patients: a randomized controlled trial. J Nov Physiother. 2016;6:284–92.
23.
go back to reference Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8:1–184. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8:1–184.
24.
go back to reference van Duijnhoven HJ, Heeren A, Peters MA, Veerbeek JM, Kwakkel G, Geurts AC, et al. Effects of exercise therapy on balance capacity in chronic stroke: systematic review and meta-analysis. Stroke. 2016;47(10):2603–10.PubMedCrossRef van Duijnhoven HJ, Heeren A, Peters MA, Veerbeek JM, Kwakkel G, Geurts AC, et al. Effects of exercise therapy on balance capacity in chronic stroke: systematic review and meta-analysis. Stroke. 2016;47(10):2603–10.PubMedCrossRef
25.
go back to reference Tally Z, Boetefuer L, Kauk C, Perez G, Schrand L, Hoder J. The efficacy of treadmill training on balance dysfunction in individuals with chronic stroke: a systematic review. Top Stroke Rehabil. 2017;24(7):539–46.PubMedCrossRef Tally Z, Boetefuer L, Kauk C, Perez G, Schrand L, Hoder J. The efficacy of treadmill training on balance dysfunction in individuals with chronic stroke: a systematic review. Top Stroke Rehabil. 2017;24(7):539–46.PubMedCrossRef
26.
go back to reference O’Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, et al. Increasing the clinical utility of the BESTest, mini-BESTest, and BriefBESTest: normative values in Canadian adults who are healthy and aged 50 years and over. Phys Ther. 2014;94(3):334–42.PubMedCrossRef O’Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, et al. Increasing the clinical utility of the BESTest, mini-BESTest, and BriefBESTest: normative values in Canadian adults who are healthy and aged 50 years and over. Phys Ther. 2014;94(3):334–42.PubMedCrossRef
27.
go back to reference Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995. Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995.
28.
go back to reference Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRef
29.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63.PubMedCrossRef Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63.PubMedCrossRef
30.
go back to reference Levin MF, Hui-Chan C. Are H and stretch reflexes in hemiparesis reproducible and correlated with spasticity? J Neurol. 1993;240(2):63–71.PubMedCrossRef Levin MF, Hui-Chan C. Are H and stretch reflexes in hemiparesis reproducible and correlated with spasticity? J Neurol. 1993;240(2):63–71.PubMedCrossRef
31.
go back to reference Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32.PubMedCrossRef Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32.PubMedCrossRef
32.
go back to reference Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. Br Med J. 2014;348:g1687.CrossRef Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. Br Med J. 2014;348:g1687.CrossRef
33.
go back to reference Ilmane N, Croteau S, Duclos C. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces. J Biomech. 2015;48(3):441–8.PubMedCrossRef Ilmane N, Croteau S, Duclos C. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces. J Biomech. 2015;48(3):441–8.PubMedCrossRef
34.
go back to reference Tsang CS, Liao LR, Chung RC, Pang MY. Psychometric properties of the mini-balance evaluation systems test (mini-BESTest) in community-dwelling individuals with chronic stroke. Phys Ther. 2013;93(8):1102–15.PubMedCrossRef Tsang CS, Liao LR, Chung RC, Pang MY. Psychometric properties of the mini-balance evaluation systems test (mini-BESTest) in community-dwelling individuals with chronic stroke. Phys Ther. 2013;93(8):1102–15.PubMedCrossRef
35.
go back to reference Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini-BESTest and berg balance scale in patients with balance disorders. Phys Ther. 2013;93(2):158–67.PubMedCrossRef Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini-BESTest and berg balance scale in patients with balance disorders. Phys Ther. 2013;93(2):158–67.PubMedCrossRef
36.
go back to reference Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008;22(6):672–5.PubMedPubMedCentralCrossRef Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008;22(6):672–5.PubMedPubMedCentralCrossRef
37.
go back to reference Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–9.PubMedCrossRef Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–9.PubMedCrossRef
38.
go back to reference Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–63.PubMedCrossRef Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–63.PubMedCrossRef
39.
go back to reference Mayo NE, Anderson S, Barclay R, Cameron JI, Desrosiers J, Eng JJ, et al. Getting on with the rest of your life following stroke: a randomized trial of a complex intervention aimed at enhancing life participation post stroke. Clin Rehabil. 2015;29(12):1198–211.PubMedCrossRef Mayo NE, Anderson S, Barclay R, Cameron JI, Desrosiers J, Eng JJ, et al. Getting on with the rest of your life following stroke: a randomized trial of a complex intervention aimed at enhancing life participation post stroke. Clin Rehabil. 2015;29(12):1198–211.PubMedCrossRef
40.
go back to reference Wood-Dauphinee SL, Opzoomer MA, Williams JI, Marchand B, Spitzer WO. Assessment of global function: the reintegration to Normal living index. Arch Phys Med Rehabil. 1988;69(8):583–90.PubMed Wood-Dauphinee SL, Opzoomer MA, Williams JI, Marchand B, Spitzer WO. Assessment of global function: the reintegration to Normal living index. Arch Phys Med Rehabil. 1988;69(8):583–90.PubMed
41.
go back to reference Archambault PS, Blackburn E, Reid D, Routhier F, Miller WC. Development and user validation of driving tasks for a power wheelchair simulator. Disabil Rehabil. 2017;39(15):1549–56.PubMedCrossRef Archambault PS, Blackburn E, Reid D, Routhier F, Miller WC. Development and user validation of driving tasks for a power wheelchair simulator. Disabil Rehabil. 2017;39(15):1549–56.PubMedCrossRef
42.
43.
go back to reference Rosenthal R. Parametric measures of effect size. Handb Res Synth. 1994;621:231–44. Rosenthal R. Parametric measures of effect size. Handb Res Synth. 1994;621:231–44.
44.
go back to reference Rosenberger WF, Sverdlov O, Hu F. Adaptive randomization for clinical trials. J Biopharm Stat. 2012;22(4):719–36.PubMedCrossRef Rosenberger WF, Sverdlov O, Hu F. Adaptive randomization for clinical trials. J Biopharm Stat. 2012;22(4):719–36.PubMedCrossRef
45.
go back to reference Schinkel-Ivy A, Huntley AH, Aqui A, Mansfield A. Does perturbation-based balance training improve control of reactive stepping in individuals with chronic stroke? J Stroke Cerebrovasc Dis. 2019;28(4):935–43.PubMedCrossRef Schinkel-Ivy A, Huntley AH, Aqui A, Mansfield A. Does perturbation-based balance training improve control of reactive stepping in individuals with chronic stroke? J Stroke Cerebrovasc Dis. 2019;28(4):935–43.PubMedCrossRef
46.
go back to reference van Duijnhoven HJR, Roelofs JMB, den Boer JJ, Lem FC, Hofman R, van Bon GEA, et al. Perturbation-based balance training to improve step quality in the chronic phase after stroke: a proof-of-concept study. Front Neurol. 2018;9:980.PubMedPubMedCentralCrossRef van Duijnhoven HJR, Roelofs JMB, den Boer JJ, Lem FC, Hofman R, van Bon GEA, et al. Perturbation-based balance training to improve step quality in the chronic phase after stroke: a proof-of-concept study. Front Neurol. 2018;9:980.PubMedPubMedCentralCrossRef
47.
go back to reference Büla CJ, Monod S, Hoskovec C, Rochat S. Interventions aiming at balance confidence improvement in older adults: an updated review. Gerontology. 2011;57(3):276–86.PubMedCrossRef Büla CJ, Monod S, Hoskovec C, Rochat S. Interventions aiming at balance confidence improvement in older adults: an updated review. Gerontology. 2011;57(3):276–86.PubMedCrossRef
48.
go back to reference Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehabil. 2004;18(1):27–39.PubMedCrossRef Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehabil. 2004;18(1):27–39.PubMedCrossRef
49.
go back to reference McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur Rev Aging Phys Act. 2017;14:3.PubMedPubMedCentralCrossRef McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur Rev Aging Phys Act. 2017;14:3.PubMedPubMedCentralCrossRef
50.
go back to reference Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700–9.PubMedCrossRef Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700–9.PubMedCrossRef
51.
go back to reference Viteckova S, Kutilek P, Kotolova V, Krupicka R, Szabo Z, Kauler J, et al., editors. Split-Belt Treadmill to Study Reactive Responses to Unexpected Gait Perturbation2019. Singapore: Springer Singapore. Viteckova S, Kutilek P, Kotolova V, Krupicka R, Szabo Z, Kauler J, et al., editors. Split-Belt Treadmill to Study Reactive Responses to Unexpected Gait Perturbation2019. Singapore: Springer Singapore.
Metadata
Title
Intense and unpredictable perturbations during gait training improve dynamic balance abilities in chronic hemiparetic individuals: a randomized controlled pilot trial
Authors
Vahid Esmaeili
Andréanne Juneau
Joseph-Omer Dyer
Anouk Lamontagne
Dahlia Kairy
Laurent Bouyer
Cyril Duclos
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Stroke
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00707-0

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue