Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Stroke | Study protocol

Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial

Authors: Lisa Sheehy, Anne Taillon-Hobson, Heidi Sveistrup, Martin Bilodeau, Christine Yang, Vivian Welch, Alomgir Hossain, Hillel Finestone

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

Virtual reality training (VRT) uses computer software to track a user’s movements and allow him or her to interact with a game presented on a television screen. VRT is increasingly being used for the rehabilitation of arm function, balance and walking after stroke. Patients often require ongoing therapy post discharge from inpatient rehabilitation. Outpatient therapy may be limited or inaccessible due to waiting lists, transportation issues, distance etc.; therefore, home-based VRT could provide the required therapy in a more convenient and accessible setting. The objectives of this parallel randomized feasibility trial are to determine (1) the feasibility of using VRT in the home post stroke and (2) the feasibility of a battery of quantitative and qualitative outcome measures of stroke recovery.

Methods

Forty patients who can stand for at least 2 min and are soon to be discharged from inpatient or outpatient rehabilitation post stroke are being recruited in Ottawa, Canada and being randomized to control and experimental groups. Participants in the experimental group use home-based VRT to do rehabilitative exercises for standing balance, stepping, reaching, strengthening and gentle aerobic fitness. Control group participants use an iPad with apps selected to rehabilitate cognition, hand fine motor skills and visual tracking/scanning. Both groups are instructed to perform 30 min of exercise 5 days a week for 6 weeks. VRT intensity and difficulty are monitored and adjusted remotely. Weekly telephone contact is made with all participants. Ability to recruit participants, ability to handle the technology and learn the activities, compliance, safety, enjoyment, perceived efficacy and cost of program delivery will be assessed. A battery of assessments of standing balance, gait and community integration will be assessed for feasibility of completion within this population and potential for improvement following the intervention. Effect sizes will be calculated.

Discussion

The results of this study will be used to support the creation of a definitive randomized controlled trial on the efficacy of home-based VRT for rehabilitation post stroke.

Trial Registration

ClinicalTrials.gov, NCT03261713. Registered on 21 August 2017. Registration amended on 1 June 2018 to decrease enrollment from 40 to 20 due to a cut in study funding and difficulty recruiting participants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hall RE, Khan F, Levi J, Ma H, Fang J, Martin C, et al. Ontario and LHIN 2015/16 Stroke report cards and progress reports: setting the bar higher. Toronto: Institute for Clinical Evaluative Sciences; 2017. Hall RE, Khan F, Levi J, Ma H, Fang J, Martin C, et al. Ontario and LHIN 2015/16 Stroke report cards and progress reports: setting the bar higher. Toronto: Institute for Clinical Evaluative Sciences; 2017.
2.
go back to reference Health Quality Ontario; Ministry of Health and Long-Term Care. Quality-based procedures: clinical handbook for stroke (acute and postacute). Toronto: Health Quality Ontario; 2016. Health Quality Ontario; Ministry of Health and Long-Term Care. Quality-based procedures: clinical handbook for stroke (acute and postacute). Toronto: Health Quality Ontario; 2016.
3.
go back to reference Murphy T, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.CrossRef Murphy T, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.CrossRef
4.
go back to reference Wahl A-S, Schwab M. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci. 2014;8:1–13.CrossRef Wahl A-S, Schwab M. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci. 2014;8:1–13.CrossRef
5.
go back to reference Levac DE, Sveistrup H. Motor learning and virtual reality. In: Weiss PL (Tamar), Keshner EA, Levin MF, editors. Virtual reality for physical and motor rehabilitation. New York: Springer; 2014. p. 25–46. Levac DE, Sveistrup H. Motor learning and virtual reality. In: Weiss PL (Tamar), Keshner EA, Levin MF, editors. Virtual reality for physical and motor rehabilitation. New York: Springer; 2014. p. 25–46.
6.
go back to reference Veerbeek JM, van Wegen E, van Peppen R, van der Wees P, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9:e87987.CrossRef Veerbeek JM, van Wegen E, van Peppen R, van der Wees P, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9:e87987.CrossRef
7.
go back to reference Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane DB Syst Rev. 2017;11:CD008349. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane DB Syst Rev. 2017;11:CD008349.
8.
go back to reference Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005;19:989–1000.CrossRef Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005;19:989–1000.CrossRef
9.
go back to reference Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J NeuroEng Rehabil. 2015;12:46.CrossRef Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J NeuroEng Rehabil. 2015;12:46.CrossRef
10.
go back to reference Gibbons EM, Thomson AN, de Noronha M, Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke – a systematic review with meta-analysis. Top Stroke Rehabil. 2016;23:440–57.CrossRef Gibbons EM, Thomson AN, de Noronha M, Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke – a systematic review with meta-analysis. Top Stroke Rehabil. 2016;23:440–57.CrossRef
11.
go back to reference Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14:52–61.CrossRef Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14:52–61.CrossRef
12.
go back to reference McEwen D, Taillon-Hobson A, Bilodeau M, Sveistrup H, Finestone H. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial. Stroke. 2014;6:1853–5.CrossRef McEwen D, Taillon-Hobson A, Bilodeau M, Sveistrup H, Finestone H. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial. Stroke. 2014;6:1853–5.CrossRef
13.
go back to reference Saposnik G, Levin M. Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42:1380–6.CrossRef Saposnik G, Levin M. Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42:1380–6.CrossRef
14.
go back to reference Cikajlo I, Rudolf M, Goljar N, Burger H, Matjačić Z. Telerehabilitation using virtual reality task can improve balance in patients with stroke. Disabil Rehabil. 2012;34:13–8.CrossRef Cikajlo I, Rudolf M, Goljar N, Burger H, Matjačić Z. Telerehabilitation using virtual reality task can improve balance in patients with stroke. Disabil Rehabil. 2012;34:13–8.CrossRef
15.
go back to reference Krpič A, Savanović A, Cikajlo I. Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff’s effort. Int J Rehabil Res. 2013;36:162–71.CrossRef Krpič A, Savanović A, Cikajlo I. Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff’s effort. Int J Rehabil Res. 2013;36:162–71.CrossRef
16.
go back to reference Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:418–25.CrossRef Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:418–25.CrossRef
17.
go back to reference Piron L, Turolla A, Tonin P, Piccione F, Lain L, Dam M. Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J Telemed Telecare. 2008;14:257–60.CrossRef Piron L, Turolla A, Tonin P, Piccione F, Lain L, Dam M. Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J Telemed Telecare. 2008;14:257–60.CrossRef
18.
go back to reference Standen PJ, Threapletoon K, Connell L, Richardson A, Brown DJ, Battersby S, et al. Patients’ use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke. Phys Ther. 2015;95:350–9.CrossRef Standen PJ, Threapletoon K, Connell L, Richardson A, Brown DJ, Battersby S, et al. Patients’ use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke. Phys Ther. 2015;95:350–9.CrossRef
19.
go back to reference Holden MK, Dyar TA, Dayan-Cimadoro L. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE T Neur Sys Reh. 2007;15:36–42.CrossRef Holden MK, Dyar TA, Dayan-Cimadoro L. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE T Neur Sys Reh. 2007;15:36–42.CrossRef
20.
go back to reference Kendzierski D, DeCarlo K. Physical activity enjoyment scale: two validation studies. J Sport Exercise Psy. 1991;13:50–64.CrossRef Kendzierski D, DeCarlo K. Physical activity enjoyment scale: two validation studies. J Sport Exercise Psy. 1991;13:50–64.CrossRef
21.
go back to reference Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27:27–36.PubMed Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27:27–36.PubMed
22.
go back to reference Campbell CM, Rowse JL. The effect of cognitive demand on timed up and go performance in older adults with and without Parkinson disease. J Neurol Phys Ther. 2003;27:2–7.CrossRef Campbell CM, Rowse JL. The effect of cognitive demand on timed up and go performance in older adults with and without Parkinson disease. J Neurol Phys Ther. 2003;27:2–7.CrossRef
23.
go back to reference Hofheinz M, Schusterschitz C. Dual task interference in estimating the risk of falls and measuring change: a comparative, psychometric study of four measurements. Clin Rehabil. 2010;24:831–42.CrossRef Hofheinz M, Schusterschitz C. Dual task interference in estimating the risk of falls and measuring change: a comparative, psychometric study of four measurements. Clin Rehabil. 2010;24:831–42.CrossRef
24.
go back to reference Lundin-Olsson L, Nyberg L. Attention, frailty, and falls: the effect of a manual task on basic mobility. J Am Geriatr Soc. 1998;46:758–61.CrossRef Lundin-Olsson L, Nyberg L. Attention, frailty, and falls: the effect of a manual task on basic mobility. J Am Geriatr Soc. 1998;46:758–61.CrossRef
25.
go back to reference Bohannon RW, Smith MB, Larkin PA. Relationship between independent sitting balance and side of hemiparesis. Phys Ther. 1986;6:944–5.CrossRef Bohannon RW, Smith MB, Larkin PA. Relationship between independent sitting balance and side of hemiparesis. Phys Ther. 1986;6:944–5.CrossRef
26.
go back to reference Howe JA, Inness EL. The Community Balance and Mobility Scale–a balance measure for individuals with traumatic brain injury. Clin Rehabil. 2006;20:885–95.CrossRef Howe JA, Inness EL. The Community Balance and Mobility Scale–a balance measure for individuals with traumatic brain injury. Clin Rehabil. 2006;20:885–95.CrossRef
27.
go back to reference Preuss RA, Popovic MP. Quantitative analysis of the limits of stability in sitting. J Appl Biomech. 2010;26:265–72.CrossRef Preuss RA, Popovic MP. Quantitative analysis of the limits of stability in sitting. J Appl Biomech. 2010;26:265–72.CrossRef
28.
go back to reference Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:2131–40.CrossRef Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:2131–40.CrossRef
29.
go back to reference Spitzer WO, Dobson AJ, Hall J, Chesterman E, Levi J, Shepherd R, et al. Measuring the quality of life of cancer patients: a concise QL-index for use by physicians. J Chronic Dis. 1981;34:585–97.CrossRef Spitzer WO, Dobson AJ, Hall J, Chesterman E, Levi J, Shepherd R, et al. Measuring the quality of life of cancer patients: a concise QL-index for use by physicians. J Chronic Dis. 1981;34:585–97.CrossRef
30.
go back to reference Flansbjer U, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2006;37:75–82. Flansbjer U, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2006;37:75–82.
31.
go back to reference Knorr S, Brouwer B, Garland SJ. Validity of the Community Balance and Mobility Scale in community-dwelling persons after stroke. Arch Phys Med Rehabil. 2010;91:890–6.CrossRef Knorr S, Brouwer B, Garland SJ. Validity of the Community Balance and Mobility Scale in community-dwelling persons after stroke. Arch Phys Med Rehabil. 2010;91:890–6.CrossRef
32.
go back to reference Mao HF, Hsueh IP, Tang PF, Sheu CF, Hsieh CL. Analysis and comparison of the psychometric properties of three balance measures for stroke patients. Stroke. 2002;33:1022–7.CrossRef Mao HF, Hsueh IP, Tang PF, Sheu CF, Hsieh CL. Analysis and comparison of the psychometric properties of three balance measures for stroke patients. Stroke. 2002;33:1022–7.CrossRef
33.
go back to reference Miller A, Clemson L, Lannin N. Measurement properties of a modified Reintegration to Normal Living Index in a community-dwelling adult rehabilitation population. Disabil Rehabil. 2011;33:1968–78.CrossRef Miller A, Clemson L, Lannin N. Measurement properties of a modified Reintegration to Normal Living Index in a community-dwelling adult rehabilitation population. Disabil Rehabil. 2011;33:1968–78.CrossRef
34.
go back to reference Mong Y, Teo TW, Ng SS. 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch Phys Med Rehabil. 2010;91:407–13.CrossRef Mong Y, Teo TW, Ng SS. 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch Phys Med Rehabil. 2010;91:407–13.CrossRef
35.
go back to reference Wee JY, Bagg SD, Palepu A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute stroke rehabilitation setting. Arch Phys Med Rehabil. 1999;80:448–52.CrossRef Wee JY, Bagg SD, Palepu A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute stroke rehabilitation setting. Arch Phys Med Rehabil. 1999;80:448–52.CrossRef
36.
go back to reference Wood-Dauphinee SL, Opzoomer MA, Williams JI, Marchand B, Spitzer WO. Assessment of global function: the Reintegration to Normal Living Index. Arch Phys Med Rehabil. 1988;69:583–90.PubMed Wood-Dauphinee SL, Opzoomer MA, Williams JI, Marchand B, Spitzer WO. Assessment of global function: the Reintegration to Normal Living Index. Arch Phys Med Rehabil. 1988;69:583–90.PubMed
37.
go back to reference Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986. Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986.
38.
go back to reference Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Efects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–36.CrossRef Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Efects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–36.CrossRef
40.
go back to reference Rabiee F. Focus-group interview and data analysis. P Nutr Soc. 2004;63:655–60.CrossRef Rabiee F. Focus-group interview and data analysis. P Nutr Soc. 2004;63:655–60.CrossRef
Metadata
Title
Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial
Authors
Lisa Sheehy
Anne Taillon-Hobson
Heidi Sveistrup
Martin Bilodeau
Christine Yang
Vivian Welch
Alomgir Hossain
Hillel Finestone
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Stroke
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3438-9

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue