Skip to main content
Top
Published in: BMC Neurology 1/2020

01-12-2020 | Stroke | Study protocol

The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response

Authors: Donatella Mattia, Floriana Pichiorri, Emma Colamarino, Marcella Masciullo, Giovanni Morone, Jlenia Toppi, Iolanda Pisotta, Federica Tamburella, Matteo Lorusso, Stefano Paolucci, Maria Puopolo, Febo Cincotti, Marco Molinari

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs for upper limb are critically needed. Brain-Computer Interfaces (BCIs) which enable the modulation of Electroencephalography (EEG) sensorimotor rhythms are promising tools to promote post-stroke recovery of upper limb motor function. The “Promotoer” study intends to boost the application of the EEG-based BCIs in clinical practice providing evidence for a short/long-term efficacy in enhancing post-stroke hand functional motor recovery and quantifiable indices of the participants response to a BCI-based intervention. To these aims, a longitudinal study will be performed in which subacute stroke participants will undergo a hand motor imagery (MI) training assisted by the Promotoer system, an EEG-based BCI system fully compliant with rehabilitation requirements.

Methods

This longitudinal 2-arm randomized controlled superiority trial will include 48 first ever, unilateral, subacute stroke participants, randomly assigned to 2 intervention groups: the BCI-assisted hand MI training and a hand MI training not supported by BCI. Both interventions are delivered (3 weekly session; 6 weeks) as add-on regimen to standard intensive rehabilitation. A multidimensional assessment will be performed at: randomization/pre-intervention, 48 h post-intervention, and at 1, 3 and 6 month/s after end of intervention. Primary outcome measure is the Fugl-Meyer Assessment (FMA, upper extremity) at 48 h post-intervention. Secondary outcome measures include: the upper extremity FMA at follow-up, the Modified Ashworth Scale, the Numeric Rating Scale for pain, the Action Research Arm Test, the National Institute of Health Stroke Scale, the Manual Muscle Test, all collected at the different timepoints as well as neurophysiological and neuroimaging measures.

Discussion

We expect the BCI-based rewarding of hand MI practice to promote long-lasting retention of the early induced improvement in hand motor outcome and also, this clinical improvement to be sustained by a long-lasting neuroplasticity changes harnessed by the BCI-based intervention. Furthermore, the longitudinal multidimensional assessment will address the selection of those stroke participants who best benefit of a BCI-assisted therapy, consistently advancing the transfer of BCIs to a best clinical practice.

Trial registration

Name of registry: BCI-assisted MI Intervention in Subacute Stroke (Promotoer).
Trial registration number: NCT04353297; registration date on the ClinicalTrial.gov platform: April, 15/2020.
Literature
1.
go back to reference Kim AS, Cahill E, Cheng NT. Global Stroke Belt: geographic variation in stroke burden worldwide. Stroke. 2015 Dec;46(12):3564–70.CrossRefPubMed Kim AS, Cahill E, Cheng NT. Global Stroke Belt: geographic variation in stroke burden worldwide. Stroke. 2015 Dec;46(12):3564–70.CrossRefPubMed
2.
go back to reference Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104–14 quiz 115.CrossRefPubMed Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104–14 quiz 115.CrossRefPubMed
3.
go back to reference Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012 Apr;26(4):291–313.CrossRefPubMed Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012 Apr;26(4):291–313.CrossRefPubMed
4.
go back to reference Raffin E, Hummel FC. Restoring motor functions after stroke: multiple approaches and opportunities. Neuroscientist. 2018 Aug 1;24(4):400–16.CrossRefPubMed Raffin E, Hummel FC. Restoring motor functions after stroke: multiple approaches and opportunities. Neuroscientist. 2018 Aug 1;24(4):400–16.CrossRefPubMed
5.
go back to reference Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002 Jun;113(6):767–91.CrossRefPubMed Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002 Jun;113(6):767–91.CrossRefPubMed
6.
go back to reference Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. Handb Clin Neurol. 2020;168:101–16.CrossRefPubMed Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. Handb Clin Neurol. 2020;168:101–16.CrossRefPubMed
7.
go back to reference Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999 Nov;110(11):1842–57.CrossRefPubMed Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999 Nov;110(11):1842–57.CrossRefPubMed
8.
go back to reference Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015 May;77(5):851–65.CrossRefPubMed Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015 May;77(5):851–65.CrossRefPubMed
9.
go back to reference Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013 Jul;74(1):100–8.CrossRefPubMedPubMedCentral Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz O, Brasil FL, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013 Jul;74(1):100–8.CrossRefPubMedPubMedCentral
10.
go back to reference Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421.CrossRefPubMedPubMedCentral Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421.CrossRefPubMedPubMedCentral
11.
go back to reference Cincotti F, Pichiorri F, Aricò P, Aloise F, Leotta F, de Vico FF, et al. EEG-based brain-computer Interface to support post-stroke motor rehabilitation of the upper limb. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4112–5. Cincotti F, Pichiorri F, Aricò P, Aloise F, Leotta F, de Vico FF, et al. EEG-based brain-computer Interface to support post-stroke motor rehabilitation of the upper limb. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4112–5.
12.
go back to reference Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, et al. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S71–8.CrossRefPubMed Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, et al. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S71–8.CrossRefPubMed
14.
go back to reference Ramos-Murguialday A, Curado MR, Broetz D, Yilmaz Ö, Brasil FL, Liberati G, et al. Brain-machine Interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil Neural Repair. 2019 Mar 1;33(3):188–98.CrossRefPubMedPubMedCentral Ramos-Murguialday A, Curado MR, Broetz D, Yilmaz Ö, Brasil FL, Liberati G, et al. Brain-machine Interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil Neural Repair. 2019 Mar 1;33(3):188–98.CrossRefPubMedPubMedCentral
15.
go back to reference Fleming MK, Sorinola IO, Roberts-Lewis SF, Wolfe CD, Wellwood I, Newham DJ. The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):143–52.CrossRefPubMed Fleming MK, Sorinola IO, Roberts-Lewis SF, Wolfe CD, Wellwood I, Newham DJ. The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):143–52.CrossRefPubMed
16.
go back to reference Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772–83.CrossRefPubMedPubMedCentral Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772–83.CrossRefPubMedPubMedCentral
17.
go back to reference Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006 Nov 1;296(17):2095–104.CrossRefPubMed Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006 Nov 1;296(17):2095–104.CrossRefPubMed
18.
go back to reference Hope TMH, Friston K, Price CJ, Leff AP, Rotshtein P, Bowman H. Recovery after stroke: not so proportional after all? Brain. 2019;142(1):15–22.CrossRefPubMed Hope TMH, Friston K, Price CJ, Leff AP, Rotshtein P, Bowman H. Recovery after stroke: not so proportional after all? Brain. 2019;142(1):15–22.CrossRefPubMed
19.
go back to reference Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16(10):826–36.CrossRefPubMed Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16(10):826–36.CrossRefPubMed
20.
go back to reference Woodbury ML, Velozo CA, Richards LG, Duncan PW. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch Phys Med Rehabil. 2013 Aug;94(8):1527–33.CrossRefPubMed Woodbury ML, Velozo CA, Richards LG, Duncan PW. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch Phys Med Rehabil. 2013 Aug;94(8):1527–33.CrossRefPubMed
21.
go back to reference Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013 Feb 5;158(3):200–7.CrossRefPubMedPubMedCentral Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013 Feb 5;158(3):200–7.CrossRefPubMedPubMedCentral
22.
go back to reference Paci M, Lorenzini C, Fioravanti E, Poli C, Lombardi B. Reliability of the 36-item version of the token test in patients with poststroke aphasia. Top Stroke Rehabil. 2015 Oct;22(5):374–6.CrossRefPubMed Paci M, Lorenzini C, Fioravanti E, Poli C, Lombardi B. Reliability of the 36-item version of the token test in patients with poststroke aphasia. Top Stroke Rehabil. 2015 Oct;22(5):374–6.CrossRefPubMed
23.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.PubMed
24.
go back to reference Hernández ED, Galeano CP, Barbosa NE, Forero SM, Nordin Å, Sunnerhagen KS, et al. Intra- and inter-rater reliability of Fugl-Meyer assessment of upper extremity in stroke. J Rehabil Med. 2019:652–9. Hernández ED, Galeano CP, Barbosa NE, Forero SM, Nordin Å, Sunnerhagen KS, et al. Intra- and inter-rater reliability of Fugl-Meyer assessment of upper extremity in stroke. J Rehabil Med. 2019:652–9.
25.
go back to reference Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011 Feb;43(3):181–9.CrossRefPubMed Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011 Feb;43(3):181–9.CrossRefPubMed
26.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206–7.CrossRefPubMed Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206–7.CrossRefPubMed
27.
go back to reference Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92.CrossRefPubMed Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92.CrossRefPubMed
28.
go back to reference Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989 Jul;20(7):864–70.CrossRefPubMed Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989 Jul;20(7):864–70.CrossRefPubMed
29.
go back to reference Imajo Y, Kanchiku T, Suzuki H, Yoshida Y, Funaba M, Nishida N, et al. Effects of differences in age and body height on normal values of central motor conduction time determined by F-waves. J Spinal Cord Med. 2017 Mar;40(2):181–7.CrossRefPubMed Imajo Y, Kanchiku T, Suzuki H, Yoshida Y, Funaba M, Nishida N, et al. Effects of differences in age and body height on normal values of central motor conduction time determined by F-waves. J Spinal Cord Med. 2017 Mar;40(2):181–7.CrossRefPubMed
30.
go back to reference Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol. 1995 Dec;5(6):727–32.CrossRefPubMed Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol. 1995 Dec;5(6):727–32.CrossRefPubMed
31.
go back to reference Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001 Jun;84(6):463–74.CrossRefPubMed Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001 Jun;84(6):463–74.CrossRefPubMed
32.
go back to reference Toppi J, De Vico FF, Vecchiato G, Maglione AG, Cincotti F, Mattia D, et al. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network. Comput Math Methods Med. 2012;2012:130985.CrossRefPubMedPubMedCentral Toppi J, De Vico FF, Vecchiato G, Maglione AG, Cincotti F, Mattia D, et al. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network. Comput Math Methods Med. 2012;2012:130985.CrossRefPubMedPubMedCentral
33.
go back to reference Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009 Mar;10(3):186–98.CrossRefPubMed Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009 Mar;10(3):186–98.CrossRefPubMed
34.
go back to reference Zimmermann P, Fimm B. A test battery for attentional performance. In: Leclercq M, Zimmermann P, editors. Applied neuropsychology of attention. London: Psychology Press; 2002. Zimmermann P, Fimm B. A test battery for attentional performance. In: Leclercq M, Zimmermann P, editors. Applied neuropsychology of attention. London: Psychology Press; 2002.
35.
go back to reference Bowie CR, Harvey PD. Administration and interpretation of the trail making test. Nat Protoc. 2006;1(5):2277–81.CrossRefPubMed Bowie CR, Harvey PD. Administration and interpretation of the trail making test. Nat Protoc. 2006;1(5):2277–81.CrossRefPubMed
36.
go back to reference Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol. 2010 Jul;121(7):1023–31.CrossRefPubMed Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol. 2010 Jul;121(7):1023–31.CrossRefPubMed
37.
go back to reference Riccio A, Leotta F, Bianchi L, Aloise F, Zickler C, Hoogerwerf E-J, et al. Workload measurement in a communication application operated through a P300-based brain-computer interface. J Neural Eng. 2011 Apr;8(2):025028.CrossRefPubMed Riccio A, Leotta F, Bianchi L, Aloise F, Zickler C, Hoogerwerf E-J, et al. Workload measurement in a communication application operated through a P300-based brain-computer interface. J Neural Eng. 2011 Apr;8(2):025028.CrossRefPubMed
38.
go back to reference Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Int J Hum Comput Interact. 2008 Jul 29;24(6):574–94.CrossRef Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Int J Hum Comput Interact. 2008 Jul 29;24(6):574–94.CrossRef
39.
go back to reference Demers L, Weiss-Lambrou R, Ska B. The Quebec user evaluation of satisfaction with assistive technology (QUEST 2.0): an overview and recent progress. Technol Disabil. 2002 Jan 1;14(3):101–5.CrossRef Demers L, Weiss-Lambrou R, Ska B. The Quebec user evaluation of satisfaction with assistive technology (QUEST 2.0): an overview and recent progress. Technol Disabil. 2002 Jan 1;14(3):101–5.CrossRef
40.
go back to reference Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034–43.CrossRefPubMed Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034–43.CrossRefPubMed
42.
go back to reference Colamarino E, Pichiorri F, Mattia D, Cincotti F. Bipolar Filters Improve Usability of Brain-Computer Interface Technology in Post-stroke Motor Rehabilitation. In: Masia L, Micera S, Akay M, Pons JL, editors. Converging Clinical and Engineering Research on Neurorehabilitation III. Switzerland: Springer International Publishing; 2019. p. 911–4. Colamarino E, Pichiorri F, Mattia D, Cincotti F. Bipolar Filters Improve Usability of Brain-Computer Interface Technology in Post-stroke Motor Rehabilitation. In: Masia L, Micera S, Akay M, Pons JL, editors. Converging Clinical and Engineering Research on Neurorehabilitation III. Switzerland: Springer International Publishing; 2019. p. 911–4.
43.
go back to reference McFarland DJ, Lefkowicz AT, Wolpaw JR. Design and operation of an EEG-based brain-computer interface with digital signal processing technology. Behav Res Methods Instrum Comput. 1997;29(3):337–45.CrossRef McFarland DJ, Lefkowicz AT, Wolpaw JR. Design and operation of an EEG-based brain-computer interface with digital signal processing technology. Behav Res Methods Instrum Comput. 1997;29(3):337–45.CrossRef
44.
go back to reference Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009 May;60(2):306–26.CrossRefPubMed Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev. 2009 May;60(2):306–26.CrossRefPubMed
Metadata
Title
The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response
Authors
Donatella Mattia
Floriana Pichiorri
Emma Colamarino
Marcella Masciullo
Giovanni Morone
Jlenia Toppi
Iolanda Pisotta
Federica Tamburella
Matteo Lorusso
Stefano Paolucci
Maria Puopolo
Febo Cincotti
Marco Molinari
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01826-w

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue