Skip to main content
Top
Published in: Annals of Intensive Care 1/2019

Open Access 01-12-2019 | Stroke | Research

Changes in dynamic arterial elastance induced by volume expansion and vasopressor in the operating room: a prospective bicentre study

Authors: Hugues de Courson, Philippe Boyer, Romain Grobost, Romain Lanchon, Musa Sesay, Karine Nouette-Gaulain, Emmanuel Futier, Matthieu Biais

Published in: Annals of Intensive Care | Issue 1/2019

Login to get access

Abstract

Background

Dynamic arterial elastance (Eadyn), defined as the ratio between pulse pressure variations and stroke volume variations, has been proposed to assess functional arterial load. We evaluated the evolution of Eadyn during volume expansion and the effects of neosynephrine infusion in hypotensive and preload-responsive patients.

Methods

In this prospective bicentre study, we included 56 mechanically ventilated patients in the operating room. Each patient had volume expansion and neosynephrine infusion. Stroke volume and stroke volume variations were obtained using esophageal Doppler, and pulse pressure variations were measured through the arterial line. Pressure response to volume expansion was defined as an increase in mean arterial pressure (MAP) ≥ 10%.

Results

Twenty-one patients were pressure responders to volume expansion. Volume expansion induced a decrease in Eadyn (from 0.69 [0.58–0.85] to 0.59 [0.42–0.77]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after volume expansion were related to age, history of arterial hypertension, net arterial compliance and effective arterial elastance. Eadyn value before volume expansion > 0.65 predicted a MAP increase ≥ 10% with a sensitivity of 76% (95% CI 53–92%) and a specificity of 60% (95% CI 42–76%). Neosynephrine infusion induced a decrease in Eadyn (from 0.67 [0.48–0.80] to 0.54 [0.37–0.68]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after neosynephrine infusion were only related to heart rate.

Conclusion

Eadyn is a potential sensitive marker of arterial tone changes following vasopressor infusion.
Literature
1.
go back to reference Hsieh JK, Dalton JE, Yang D, Farag ES, Sessler DI, Kurz AM. The association between mild intraoperative hypotension and stroke in general surgery patients. Anesth Analg. 2016;123(4):933–9.CrossRef Hsieh JK, Dalton JE, Yang D, Farag ES, Sessler DI, Kurz AM. The association between mild intraoperative hypotension and stroke in general surgery patients. Anesth Analg. 2016;123(4):933–9.CrossRef
2.
go back to reference Maheshwari A, McCormick PJ, Sessler DI, Reich DL, You J, Mascha EJ, et al. Prolonged concurrent hypotension and low bispectral index (‘double low’) are associated with mortality, serious complications, and prolonged hospitalization after cardiac surgery. Br J Anaesth. 2017;119(1):40–9.CrossRef Maheshwari A, McCormick PJ, Sessler DI, Reich DL, You J, Mascha EJ, et al. Prolonged concurrent hypotension and low bispectral index (‘double low’) are associated with mortality, serious complications, and prolonged hospitalization after cardiac surgery. Br J Anaesth. 2017;119(1):40–9.CrossRef
3.
go back to reference Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126(1):47–65.CrossRef Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126(1):47–65.CrossRef
4.
go back to reference Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care Lond Engl. 2014;18(6):650.CrossRef Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care Lond Engl. 2014;18(6):650.CrossRef
5.
go back to reference Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.CrossRef Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.CrossRef
6.
go back to reference Biais M, Ouattara A, Janvier G, Sztark F. Case scenario: respiratory variations in arterial pressure for guiding fluid management in mechanically ventilated patients. Anesthesiology. 2012;116(6):1354–61.CrossRef Biais M, Ouattara A, Janvier G, Sztark F. Case scenario: respiratory variations in arterial pressure for guiding fluid management in mechanically ventilated patients. Anesthesiology. 2012;116(6):1354–61.CrossRef
7.
go back to reference Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–60.CrossRef Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–60.CrossRef
8.
go back to reference Guinot P-G, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. Crit Care Lond Engl. 2015;19:14.CrossRef Guinot P-G, Bernard E, Levrard M, Dupont H, Lorne E. Dynamic arterial elastance predicts mean arterial pressure decrease associated with decreasing norepinephrine dosage in septic shock. Crit Care Lond Engl. 2015;19:14.CrossRef
9.
go back to reference Guinot P-G, Abou-Arab O, Guilbart M, Bar S, Zogheib E, Daher M, et al. Monitoring dynamic arterial elastance as a means of decreasing the duration of norepinephrine treatment in vasoplegic syndrome following cardiac surgery: a prospective, randomized trial. Intensiv Care Med. 2017;43(5):643–51.CrossRef Guinot P-G, Abou-Arab O, Guilbart M, Bar S, Zogheib E, Daher M, et al. Monitoring dynamic arterial elastance as a means of decreasing the duration of norepinephrine treatment in vasoplegic syndrome following cardiac surgery: a prospective, randomized trial. Intensiv Care Med. 2017;43(5):643–51.CrossRef
10.
go back to reference Wu C, Cheng Y, Liu Y, Wu T, Chien C, Chan K, et al. Predicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables: a prospective study of diagnostic accuracy. Eur J Anaesthesiol. 2016;33(9):645–52.CrossRef Wu C, Cheng Y, Liu Y, Wu T, Chien C, Chan K, et al. Predicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables: a prospective study of diagnostic accuracy. Eur J Anaesthesiol. 2016;33(9):645–52.CrossRef
11.
go back to reference Vos JJ, Kalmar AF, Struys MMRF, Wietasch JKG, Hendriks HGD, Scheeren TWL. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110(6):940–6.CrossRef Vos JJ, Kalmar AF, Struys MMRF, Wietasch JKG, Hendriks HGD, Scheeren TWL. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110(6):940–6.CrossRef
12.
go back to reference Lanchon R, Nouette-Gaulain K, Stecken L, Sesay M, Lefrant J-Y, Biais M. Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room. Anaesth Crit Care Pain Med. 2017;36(6):377–82.CrossRef Lanchon R, Nouette-Gaulain K, Stecken L, Sesay M, Lefrant J-Y, Biais M. Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room. Anaesth Crit Care Pain Med. 2017;36(6):377–82.CrossRef
13.
go back to reference Monge García MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care Lond Engl. 2014;18(6):626.CrossRef Monge García MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care Lond Engl. 2014;18(6):626.CrossRef
14.
go back to reference Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120(1):76–84.CrossRef Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120(1):76–84.CrossRef
15.
go back to reference Seo H, Kong Y-G, Jin S-J, Chin J-H, Kim H-Y, Lee Y-K, et al. Dynamic arterial elastance in predicting arterial pressure increase after fluid challenge during robot-assisted laparoscopic prostatectomy: a prospective observational study. Medicine. 2015;94(41):e1794.CrossRef Seo H, Kong Y-G, Jin S-J, Chin J-H, Kim H-Y, Lee Y-K, et al. Dynamic arterial elastance in predicting arterial pressure increase after fluid challenge during robot-assisted laparoscopic prostatectomy: a prospective observational study. Medicine. 2015;94(41):e1794.CrossRef
16.
go back to reference Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care Lond Engl. 2011;15(1):R15.CrossRef Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care Lond Engl. 2011;15(1):R15.CrossRef
17.
go back to reference Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock. Crit Care. 2019;23(1):118.CrossRef Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock. Crit Care. 2019;23(1):118.CrossRef
18.
go back to reference Stens J, Oeben J, Van Dusseldorp AA, Boer C. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor. J Clin Monit Comput. 2016;30(5):587–94.CrossRef Stens J, Oeben J, Van Dusseldorp AA, Boer C. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor. J Clin Monit Comput. 2016;30(5):587–94.CrossRef
19.
go back to reference Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.CrossRef Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.CrossRef
20.
go back to reference Guinot P-G, de Broca B, Bernard E, Abou Arab O, Lorne E, Dupont H. Respiratory stroke volume variation assessed by oesophageal Doppler monitoring predicts fluid responsiveness during laparoscopy. Br J Anaesth. 2014;112(4):660–4.CrossRef Guinot P-G, de Broca B, Bernard E, Abou Arab O, Lorne E, Dupont H. Respiratory stroke volume variation assessed by oesophageal Doppler monitoring predicts fluid responsiveness during laparoscopy. Br J Anaesth. 2014;112(4):660–4.CrossRef
21.
go back to reference Chemla D, Hébert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.CrossRef Chemla D, Hébert JL, Coirault C, Zamani K, Suard I, Colin P, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.CrossRef
22.
go back to reference Jozwiak M, Millasseau S, Richard C, Monnet X, Mercado P, Dépret F, et al. Validation and critical evaluation of the effective arterial elastance in critically ill patients. Crit Care Med. 2019;47(4):e317–24.CrossRef Jozwiak M, Millasseau S, Richard C, Monnet X, Mercado P, Dépret F, et al. Validation and critical evaluation of the effective arterial elastance in critically ill patients. Crit Care Med. 2019;47(4):e317–24.CrossRef
24.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef
25.
go back to reference Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care Lond Engl. 2014;18(6):587.CrossRef Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care Lond Engl. 2014;18(6):587.CrossRef
26.
go back to reference Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.CrossRef Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.CrossRef
27.
go back to reference Molenberghs G, Verbeke G. Linear mixed models for longitudinal data. Berlin: Springer; 2000.CrossRef Molenberghs G, Verbeke G. Linear mixed models for longitudinal data. Berlin: Springer; 2000.CrossRef
28.
go back to reference Monge García MI, Saludes Orduña P, Cecconi M. Understanding arterial load. Intensiv Care Med. 2016;42(10):1625–7.CrossRef Monge García MI, Saludes Orduña P, Cecconi M. Understanding arterial load. Intensiv Care Med. 2016;42(10):1625–7.CrossRef
29.
go back to reference Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMed Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMed
30.
go back to reference Rebet O, Andremont O, Gérard J-L, Fellahi J-L, Hanouz J-L, Fischer M-O. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients: a prospective observational study. Eur J Anaesthesiol. 2016;33(9):638–44.CrossRef Rebet O, Andremont O, Gérard J-L, Fellahi J-L, Hanouz J-L, Fischer M-O. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients: a prospective observational study. Eur J Anaesthesiol. 2016;33(9):638–44.CrossRef
31.
go back to reference Cannesson M, Jian Z, Chen G, Vu TQ, Hatib F. Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J Appl Physiol. 2012;113(2):281–9.CrossRef Cannesson M, Jian Z, Chen G, Vu TQ, Hatib F. Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J Appl Physiol. 2012;113(2):281–9.CrossRef
32.
go back to reference Goertz AW, Schmidt M, Seefelder C, Lindner KH, Georgieff M. The effect of phenylephrine bolus administration on left ventricular function during isoflurane-induced hypotension. Anesth Analg. 1993;77(2):227–31.CrossRef Goertz AW, Schmidt M, Seefelder C, Lindner KH, Georgieff M. The effect of phenylephrine bolus administration on left ventricular function during isoflurane-induced hypotension. Anesth Analg. 1993;77(2):227–31.CrossRef
Metadata
Title
Changes in dynamic arterial elastance induced by volume expansion and vasopressor in the operating room: a prospective bicentre study
Authors
Hugues de Courson
Philippe Boyer
Romain Grobost
Romain Lanchon
Musa Sesay
Karine Nouette-Gaulain
Emmanuel Futier
Matthieu Biais
Publication date
01-12-2019
Publisher
Springer International Publishing
Keyword
Stroke
Published in
Annals of Intensive Care / Issue 1/2019
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-019-0588-6

Other articles of this Issue 1/2019

Annals of Intensive Care 1/2019 Go to the issue