Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Streptococci | Research

Functional screening of a human saliva metagenomic DNA reveal novel resistance genes against sodium hypochlorite and chlorhexidine

Authors: Johannes Wigand, Supathep Tansirichaiya, Endre Winje, Mohammed Al-Haroni

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Objective

Many sections of the health care system are facing a major challenge making infectious disease problematic to treat; antimicrobial resistance (AMR). Identification and surveillance of the resistome have been highlighted as one of the strategies to overcome the problem. This study aimed to screen for AMR genes in an oral microbiota, a complex microbial system continuously exposed to antimicrobial agents commonly used in dental practice.

Materials and methods

As a significant part of the oral microbiome cannot be conventionally cultured, a functional metagenomic approach was chosen. The human oral metagenomic DNA was extracted from saliva samples collected from 50 healthy volunteers in Norway. The oral metagenomic library was then constructed by ligating partially digested oral metagenome into pSMART BAC vector and introducing into Escherichia coli. The library was screened against antimicrobials in dental practices. All resistant clones were selected and analyzed.

Results

Screening of the oral metagenomic library against different antimicrobials detected multiple clones with resistance against chlorhexidine, triclosan, erythromycin, tetracycline, and sodium hypochlorite. Bioinformatic analysis revealed both already known resistance genes, including msr, mef(A), tetAB(46), and fabK, and genes that were not previously described to confer resistance, including recA and accB conferring resistance to sodium hypochlorite and chlorhexidine, respectively.

Conclusion

Multiple clones conferring resistance to antimicrobials commonly used in dental practices were detected, containing known and novel resistant genes by functional-based metagenomics. There is a need for more studies to increase our knowledge in the field.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tansirichaiya S, Reynolds LJ, Cristarella G, Wong LC, Rosendahl K, Roberts AP. Reduced susceptibility to antiseptics is conferred by heterologous housekeeping genes. Microb Drug Resist. 2018;24(2):105–12.PubMedCrossRef Tansirichaiya S, Reynolds LJ, Cristarella G, Wong LC, Rosendahl K, Roberts AP. Reduced susceptibility to antiseptics is conferred by heterologous housekeeping genes. Microb Drug Resist. 2018;24(2):105–12.PubMedCrossRef
2.
go back to reference Paitan Y. Current trends in antimicrobial resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181–211.PubMed Paitan Y. Current trends in antimicrobial resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181–211.PubMed
3.
go back to reference Harada K, Asai T. Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. J Biomed Biotechnol. 2010;2010:180682.PubMedPubMedCentralCrossRef Harada K, Asai T. Role of antimicrobial selective pressure and secondary factors on antimicrobial resistance prevalence in Escherichia coli from food-producing animals in Japan. J Biomed Biotechnol. 2010;2010:180682.PubMedPubMedCentralCrossRef
4.
go back to reference Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel Insights into selection for antibiotic resistance in complex microbial communities. mBio. 2018;9(4):e00969–18. Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. Novel Insights into selection for antibiotic resistance in complex microbial communities. mBio. 2018;9(4):e00969–18.
5.
go back to reference D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.PubMedCrossRef D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.PubMedCrossRef
6.
go back to reference Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–44.PubMedPubMedCentralCrossRef Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–44.PubMedPubMedCentralCrossRef
7.
go back to reference Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE. 2012;7(4):e34953.PubMedPubMedCentralCrossRef Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE. 2012;7(4):e34953.PubMedPubMedCentralCrossRef
8.
go back to reference Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–76. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–76.
9.
go back to reference Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018;42(1):fux053. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018;42(1):fux053.
10.
go back to reference Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44.PubMedCrossRef Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44.PubMedCrossRef
11.
go back to reference Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15(7):422–34.PubMedPubMedCentralCrossRef Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15(7):422–34.PubMedPubMedCentralCrossRef
12.
go back to reference Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99–106.PubMedCrossRef Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018;18(3):e99–106.PubMedCrossRef
13.
go back to reference McEwen SA, Collignon PJ. Antimicrobial resistance: a one health perspective. Microbiol Spectr. 2018;6(2):521–47. McEwen SA, Collignon PJ. Antimicrobial resistance: a one health perspective. Microbiol Spectr. 2018;6(2):521–47.
14.
go back to reference Shaw L, Ribeiro ALR, Levine AP, Pontikos N, Balloux F, Segal AW, et al. The human salivary microbiome is shaped by shared environment rather than genetics: evidence from a large family of closely related individuals. mBio. 2017;8(5):e01237–17. Shaw L, Ribeiro ALR, Levine AP, Pontikos N, Balloux F, Segal AW, et al. The human salivary microbiome is shaped by shared environment rather than genetics: evidence from a large family of closely related individuals. mBio. 2017;8(5):e01237–17.
16.
17.
go back to reference Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40.PubMedCrossRef Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40.PubMedCrossRef
19.
go back to reference Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–86.PubMedCrossRef Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–86.PubMedCrossRef
20.
go back to reference Solderer A, Kaufmann M, Hofer D, Wiedemeier D, Attin T, Schmidlin PR. Efficacy of chlorhexidine rinses after periodontal or implant surgery: a systematic review. Clin Oral Investig. 2019;23(1):21–32.PubMedCrossRef Solderer A, Kaufmann M, Hofer D, Wiedemeier D, Attin T, Schmidlin PR. Efficacy of chlorhexidine rinses after periodontal or implant surgery: a systematic review. Clin Oral Investig. 2019;23(1):21–32.PubMedCrossRef
21.
go back to reference James P, Worthington HV, Parnell C, Harding M, Lamont T, Cheung A, et al. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017;3:CD008676.PubMed James P, Worthington HV, Parnell C, Harding M, Lamont T, Cheung A, et al. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017;3:CD008676.PubMed
22.
go back to reference Goncalves LS, Rodrigues RC, Andrade Junior CV, Soares RG, Vettore MV. The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J Endod. 2016;42(4):527–32.PubMedCrossRef Goncalves LS, Rodrigues RC, Andrade Junior CV, Soares RG, Vettore MV. The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J Endod. 2016;42(4):527–32.PubMedCrossRef
23.
go back to reference Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, et al. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother. 2003;47(4):1430–2.PubMedPubMedCentralCrossRef Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, et al. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother. 2003;47(4):1430–2.PubMedPubMedCentralCrossRef
24.
go back to reference Reynolds LJ, Roberts AP, Anjum MF. Efflux in the oral metagenome: the discovery of a novel tetracycline and tigecycline ABC transporter. Front Microbiol. 2016;7:1923. Reynolds LJ, Roberts AP, Anjum MF. Efflux in the oral metagenome: the discovery of a novel tetracycline and tigecycline ABC transporter. Front Microbiol. 2016;7:1923.
25.
go back to reference Diaz-Torres ML, Villedieu A, Hunt N, McNab R, Spratt DA, Allan E, et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett. 2006;258(2):257–62.PubMedCrossRef Diaz-Torres ML, Villedieu A, Hunt N, McNab R, Spratt DA, Allan E, et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett. 2006;258(2):257–62.PubMedCrossRef
26.
go back to reference Almeida VSM, Azevedo J, Leal HF, Queiroz ATL, da Silva Filho HP, Reis JN. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS ONE. 2020;15(9):e0239664.PubMedPubMedCentralCrossRef Almeida VSM, Azevedo J, Leal HF, Queiroz ATL, da Silva Filho HP, Reis JN. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS ONE. 2020;15(9):e0239664.PubMedPubMedCentralCrossRef
27.
go back to reference Moraes LC, So MV, Dal Pizzol TS, Ferreira MB, Montagner F. Distribution of genes related to antimicrobial resistance in different oral environments: a systematic review. J Endod. 2015;41(4):434–41.PubMedCrossRef Moraes LC, So MV, Dal Pizzol TS, Ferreira MB, Montagner F. Distribution of genes related to antimicrobial resistance in different oral environments: a systematic review. J Endod. 2015;41(4):434–41.PubMedCrossRef
28.
go back to reference Rocas IN, Siqueira JF Jr. Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol. 2013;58(9):1123–8.PubMedCrossRef Rocas IN, Siqueira JF Jr. Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol. 2013;58(9):1123–8.PubMedCrossRef
30.
go back to reference Wade W, Thompson H, Rybalka A, Vartoukian S. Uncultured members of the oral microbiome. J Calif Dent Assoc. 2016;44(7):447–56.PubMed Wade W, Thompson H, Rybalka A, Vartoukian S. Uncultured members of the oral microbiome. J Calif Dent Assoc. 2016;44(7):447–56.PubMed
31.
go back to reference Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5(10):R245–9.PubMedCrossRef Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5(10):R245–9.PubMedCrossRef
32.
go back to reference Boolchandani M, Patel S, Dantas G. Functional metagenomics to study antibiotic resistance. Methods Mol Biol. 2017;1520:307–29.PubMedCrossRef Boolchandani M, Patel S, Dantas G. Functional metagenomics to study antibiotic resistance. Methods Mol Biol. 2017;1520:307–29.PubMedCrossRef
33.
go back to reference Tansirichaiya S, Reynolds LJ, Roberts AP. Functional metagenomic screening for antimicrobial resistance in the oral microbiome. Methods Mol Biol. 2021;2327:31–50.PubMedCrossRef Tansirichaiya S, Reynolds LJ, Roberts AP. Functional metagenomic screening for antimicrobial resistance in the oral microbiome. Methods Mol Biol. 2021;2327:31–50.PubMedCrossRef
36.
go back to reference Verma MK, Ahmed V, Gupta S, Kumar J, Pandey R, Mandhan V, et al. Functional metagenomics identifies novel genes ABCTPP, TMSRP1 and TLSRP1 among human gut enterotypes. Sci Rep. 2018;8(1):1397.PubMedPubMedCentralCrossRef Verma MK, Ahmed V, Gupta S, Kumar J, Pandey R, Mandhan V, et al. Functional metagenomics identifies novel genes ABCTPP, TMSRP1 and TLSRP1 among human gut enterotypes. Sci Rep. 2018;8(1):1397.PubMedPubMedCentralCrossRef
37.
go back to reference Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ Int. 2018;112:279–86.PubMedCrossRef Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ Int. 2018;112:279–86.PubMedCrossRef
38.
go back to reference Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.PubMedCrossRef Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.PubMedCrossRef
40.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.PubMedCrossRef Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.PubMedCrossRef
41.
go back to reference Chancey ST, Zahner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 2012;7(8):959–78.PubMedCrossRef Chancey ST, Zahner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 2012;7(8):959–78.PubMedCrossRef
43.
go back to reference Warburton PJ, Ciric L, Lerner A, Seville LA, Roberts AP, Mullany P, et al. TetAB46, a predicted heterodimeric ABC transporter conferring tetracycline resistance in Streptococcus australis isolated from the oral cavity. J Antimicrob Chemother. 2013;68(1):17–22.PubMedCrossRef Warburton PJ, Ciric L, Lerner A, Seville LA, Roberts AP, Mullany P, et al. TetAB46, a predicted heterodimeric ABC transporter conferring tetracycline resistance in Streptococcus australis isolated from the oral cavity. J Antimicrob Chemother. 2013;68(1):17–22.PubMedCrossRef
44.
go back to reference Santoro F, Vianna ME, Roberts AP. Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 2014;5:535.PubMedPubMedCentralCrossRef Santoro F, Vianna ME, Roberts AP. Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 2014;5:535.PubMedPubMedCentralCrossRef
45.
go back to reference Lunde TM, Hjerde E, Al-Haroni M. Prevalence, diversity and transferability of the Tn916-Tn1545 family ICE in oral streptococci. J Oral Microbiol. 2021;13(1):1896874.PubMedPubMedCentralCrossRef Lunde TM, Hjerde E, Al-Haroni M. Prevalence, diversity and transferability of the Tn916-Tn1545 family ICE in oral streptococci. J Oral Microbiol. 2021;13(1):1896874.PubMedPubMedCentralCrossRef
46.
go back to reference Villedieu A, Diaz-Torres ML, Roberts AP, Hunt N, McNab R, Spratt DA, et al. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob Agents Chemother. 2004;48(6):2298–301.PubMedPubMedCentralCrossRef Villedieu A, Diaz-Torres ML, Roberts AP, Hunt N, McNab R, Spratt DA, et al. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob Agents Chemother. 2004;48(6):2298–301.PubMedPubMedCentralCrossRef
47.
go back to reference Chaffanel F, Charron-Bourgoin F, Libante V, Leblond-Bourget N, Payot S. Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of Streptococcus salivarius. Appl Environ Microbiol. 2015;81(12):4155–63.PubMedPubMedCentralCrossRef Chaffanel F, Charron-Bourgoin F, Libante V, Leblond-Bourget N, Payot S. Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of Streptococcus salivarius. Appl Environ Microbiol. 2015;81(12):4155–63.PubMedPubMedCentralCrossRef
48.
go back to reference Loe H, Schiott CR. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res. 1970;5(2):79–83.PubMedCrossRef Loe H, Schiott CR. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res. 1970;5(2):79–83.PubMedCrossRef
49.
go back to reference Lim KS, Kam PC. Chlorhexidine–pharmacology and clinical applications. Anaesth Intensive Care. 2008;36(4):502–12.PubMedCrossRef Lim KS, Kam PC. Chlorhexidine–pharmacology and clinical applications. Anaesth Intensive Care. 2008;36(4):502–12.PubMedCrossRef
50.
go back to reference Karpinski TM, Szkaradkiewicz AK. Chlorhexidine–pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci. 2015;19(7):1321–6.PubMed Karpinski TM, Szkaradkiewicz AK. Chlorhexidine–pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci. 2015;19(7):1321–6.PubMed
51.
go back to reference Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2016;61(1):e01162–16. Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2016;61(1):e01162–16.
52.
go back to reference Karow M, Fayet O, Georgopoulos C. The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol. 1992;174(22):7407–18.PubMedPubMedCentralCrossRef Karow M, Fayet O, Georgopoulos C. The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol. 1992;174(22):7407–18.PubMedPubMedCentralCrossRef
53.
go back to reference Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019;10:210.PubMedPubMedCentralCrossRef Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019;10:210.PubMedPubMedCentralCrossRef
55.
go back to reference Tronstad L, Andreasen JO, Hasselgren G, Kristerson L, Riis I. pH changes in dental tissues after root canal filling with calcium hydroxide. J Endod. 1981;7(1):17–21.PubMedCrossRef Tronstad L, Andreasen JO, Hasselgren G, Kristerson L, Riis I. pH changes in dental tissues after root canal filling with calcium hydroxide. J Endod. 1981;7(1):17–21.PubMedCrossRef
56.
go back to reference Kristoffersen Ø, Fristad I. Natriumhypokloritt – anbefalinger og praktisk bruk. Nor Tannlegeforen Tid. 2007;117:656–60. Kristoffersen Ø, Fristad I. Natriumhypokloritt – anbefalinger og praktisk bruk. Nor Tannlegeforen Tid. 2007;117:656–60.
58.
go back to reference Small DA, Chang W, Toghrol F, Bentley WE. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2007;74(1):176–85.PubMedCrossRef Small DA, Chang W, Toghrol F, Bentley WE. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2007;74(1):176–85.PubMedCrossRef
59.
go back to reference Collao B, Morales EH, Gil F, Polanco R, Calderon IL, Saavedra CP. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol. 2012;194(11):933–42.PubMedCrossRef Collao B, Morales EH, Gil F, Polanco R, Calderon IL, Saavedra CP. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol. 2012;194(11):933–42.PubMedCrossRef
60.
go back to reference Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996;178(21):6145–50.PubMedPubMedCentralCrossRef Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996;178(21):6145–50.PubMedPubMedCentralCrossRef
61.
go back to reference Furi L, Haigh R, Al Jabri ZJ, Morrissey I, Ou HY, Leon-Sampedro R, et al. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol. 2016;7:1008.PubMedPubMedCentralCrossRef Furi L, Haigh R, Al Jabri ZJ, Morrissey I, Ou HY, Leon-Sampedro R, et al. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol. 2016;7:1008.PubMedPubMedCentralCrossRef
62.
go back to reference Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427(6969):72–4.PubMedCrossRef Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427(6969):72–4.PubMedCrossRef
63.
go back to reference Bouloux GF, Steed MB, Perciaccante VJ. Complications of third molar surgery. Oral Maxillofac Surg Clin N Am. 2007;19(1):117–28.CrossRef Bouloux GF, Steed MB, Perciaccante VJ. Complications of third molar surgery. Oral Maxillofac Surg Clin N Am. 2007;19(1):117–28.CrossRef
64.
go back to reference Caso A, Hung LK, Beirne OR. Prevention of alveolar osteitis with chlorhexidine: a meta-analytic review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(2):155–9.PubMedCrossRef Caso A, Hung LK, Beirne OR. Prevention of alveolar osteitis with chlorhexidine: a meta-analytic review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(2):155–9.PubMedCrossRef
65.
go back to reference Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Beglundh T, et al. Treatment of stage I–III periodontitis—the EFP S3 level clinical practice guideline. J Clin Periodontol. 2020;47(Suppl 22):4–60.PubMedPubMedCentralCrossRef Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Beglundh T, et al. Treatment of stage I–III periodontitis—the EFP S3 level clinical practice guideline. J Clin Periodontol. 2020;47(Suppl 22):4–60.PubMedPubMedCentralCrossRef
66.
go back to reference Perry SE, Huckabee ML, Tompkins G, Milne T. The association between oral bacteria, the cough reflex and pneumonia in patients with acute stroke and suspected dysphagia. J Oral Rehabil. 2020;47(3):386–94.PubMedCrossRef Perry SE, Huckabee ML, Tompkins G, Milne T. The association between oral bacteria, the cough reflex and pneumonia in patients with acute stroke and suspected dysphagia. J Oral Rehabil. 2020;47(3):386–94.PubMedCrossRef
67.
go back to reference Scannapieco FA. Role of oral bacteria in respiratory infection. J Periodontol. 1999;70(7):793–802.PubMedCrossRef Scannapieco FA. Role of oral bacteria in respiratory infection. J Periodontol. 1999;70(7):793–802.PubMedCrossRef
68.
go back to reference Nishizawa T, Niikura Y, Akasaka K, Watanabe M, Kurai D, Amano M, et al. Pilot study for risk assessment of aspiration pneumonia based on oral bacteria levels and serum biomarkers. BMC Infect Dis. 2019;19(1):761.PubMedPubMedCentralCrossRef Nishizawa T, Niikura Y, Akasaka K, Watanabe M, Kurai D, Amano M, et al. Pilot study for risk assessment of aspiration pneumonia based on oral bacteria levels and serum biomarkers. BMC Infect Dis. 2019;19(1):761.PubMedPubMedCentralCrossRef
69.
go back to reference Sukumar S, Roberts AP, Martin FE, Adler CJ. Metagenomic insights into transferable antibiotic resistance in oral bacteria. J Dent Res. 2016;95(9):969–76.PubMedCrossRef Sukumar S, Roberts AP, Martin FE, Adler CJ. Metagenomic insights into transferable antibiotic resistance in oral bacteria. J Dent Res. 2016;95(9):969–76.PubMedCrossRef
70.
go back to reference Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009;22(1):46–64.PubMedPubMedCentralCrossRef Parahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009;22(1):46–64.PubMedPubMedCentralCrossRef
71.
go back to reference DeSimone DC, Tleyjeh IM, Correa de Sa DD, Anavekar NS, Lahr BD, Sohail MR, et al. Incidence of infective endocarditis due to Viridans Group Streptococci before and after the 2007 American Heart Association’s Prevention Guidelines: an extended evaluation of the Olmsted County, Minnesota, population and nationwide inpatient sample. Mayo Clin Proc. 2015;90(7):874–81.PubMedCrossRef DeSimone DC, Tleyjeh IM, Correa de Sa DD, Anavekar NS, Lahr BD, Sohail MR, et al. Incidence of infective endocarditis due to Viridans Group Streptococci before and after the 2007 American Heart Association’s Prevention Guidelines: an extended evaluation of the Olmsted County, Minnesota, population and nationwide inpatient sample. Mayo Clin Proc. 2015;90(7):874–81.PubMedCrossRef
72.
go back to reference Dayer MJ, Jones S, Prendergast B, Baddour LM, Lockhart PB, Thornhill MH. Incidence of infective endocarditis in England, 2000–13: a secular trend, interrupted time-series analysis. Lancet. 2015;385(9974):1219–28.PubMedCrossRef Dayer MJ, Jones S, Prendergast B, Baddour LM, Lockhart PB, Thornhill MH. Incidence of infective endocarditis in England, 2000–13: a secular trend, interrupted time-series analysis. Lancet. 2015;385(9974):1219–28.PubMedCrossRef
Metadata
Title
Functional screening of a human saliva metagenomic DNA reveal novel resistance genes against sodium hypochlorite and chlorhexidine
Authors
Johannes Wigand
Supathep Tansirichaiya
Endre Winje
Mohammed Al-Haroni
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-02000-5

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue