Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Streptococci | Research

Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study

Authors: Mor Schneider-Rayman, Doron Steinberg, Ronit Vogt Sionov, Michael Friedman, Miriam Shalish

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Streptococcus mutans (S. mutans) plays a major role in the formation of dental caries. The aim of this study was to examine the effect of the green tea polyphenol, epigallocatechin gallate (EGCG), on biofilm formation of S. mutans.

Methods

Following exposure to increasing concentrations of EGCG, the planktonic growth was measured by optical density and the biofilm biomass was quantified by crystal violet staining. Exopolysaccharides (EPS) production was visualized by confocal scanning laser microscopy, and the bacterial DNA content was determined by quantitative polymerase chain reaction (qPCR). Gene expression of selected genes was analyzed by real time (RT)-qPCR and membrane potential was examined by flow cytometry.

Results

We observed that EGCG inhibited in a dose-dependent manner both the planktonic growth and the biofilm formation of S. mutans. Significant reduction of S. mutans biofilm formation, DNA content, and EPS production was observed at 2.2–4.4 mg/ml EGCG. EGCG reduced the expression of gtfB, gtfC and ftf genes involved in EPS production, and the nox and sodA genes involved in the protection against oxidative stress. Moreover, EGCG caused an immediate change in membrane potential.

Conclusions

EGCG, a natural polyphenol, has a significant inhibitory effect on S. mutans dental biofilm formation and EPS production, and thus might be a potential drug in preventing dental caries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1):435–48.CrossRef Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1):435–48.CrossRef
2.
go back to reference Wang C, Hou J, van der Mei HC, Busscher HJ, Ren Y. Emergen properties in Streptococcus mutans biofilms are controlled through adhesion force sensing by initial colonizers. mBio. 2019;10(5):1908–19.CrossRef Wang C, Hou J, van der Mei HC, Busscher HJ, Ren Y. Emergen properties in Streptococcus mutans biofilms are controlled through adhesion force sensing by initial colonizers. mBio. 2019;10(5):1908–19.CrossRef
3.
go back to reference Sachdeo A, Haffajee AD, Socransky SS. Biofilms in the edentulous oral cavity. J Prosthodontics. 2008;17(5):348–56.CrossRef Sachdeo A, Haffajee AD, Socransky SS. Biofilms in the edentulous oral cavity. J Prosthodontics. 2008;17(5):348–56.CrossRef
4.
go back to reference Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ. Orthodontic treatment with fixed appliances and biofilm formation-a potential public health threat? Clin Oral Investig. 2014;18(7):1711–8.PubMedCrossRef Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ. Orthodontic treatment with fixed appliances and biofilm formation-a potential public health threat? Clin Oral Investig. 2014;18(7):1711–8.PubMedCrossRef
6.
go back to reference Marsh PD. Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health. 2006;6(SUPPL. 1):1–7. Marsh PD. Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health. 2006;6(SUPPL. 1):1–7.
7.
go back to reference Banas JA. Virulence properties of emopen Streptococcus mutansemclose. Front Biosci Biosci. 2004;16:1267.CrossRef Banas JA. Virulence properties of emopen Streptococcus mutansemclose. Front Biosci Biosci. 2004;16:1267.CrossRef
9.
go back to reference WF L, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med. 1996;7(2):180–98.PubMedCrossRef WF L, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med. 1996;7(2):180–98.PubMedCrossRef
10.
go back to reference KrzyAciak W, Jurczak A, KoAcielniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515.CrossRef KrzyAciak W, Jurczak A, KoAcielniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515.CrossRef
11.
go back to reference MI K, Hwang G, PH S, OH C, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. MI K, Hwang G, PH S, OH C, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10.
12.
go back to reference Wexler DL, Hudson MC, Burnel RA. Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Imminity. 1993;61(4):1259–67.CrossRef Wexler DL, Hudson MC, Burnel RA. Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Imminity. 1993;61(4):1259–67.CrossRef
13.
go back to reference Arirachakaran P, Benjavongkulchai E, Luengpailin S, Ajdic D, Banas JA. Manganese affects Streptococcus mutans virulence gene expression. Caries Res. 2007;41(6):503–11.PubMedPubMedCentralCrossRef Arirachakaran P, Benjavongkulchai E, Luengpailin S, Ajdic D, Banas JA. Manganese affects Streptococcus mutans virulence gene expression. Caries Res. 2007;41(6):503–11.PubMedPubMedCentralCrossRef
15.
go back to reference Colombo APV, Tanner ACR. The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: a historical perspective. J Dent Res. 2019;98(4):373-385.14.CrossRef Colombo APV, Tanner ACR. The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: a historical perspective. J Dent Res. 2019;98(4):373-385.14.CrossRef
16.
go back to reference Rath SK, Singh M. Comparative clinical and microbiological efficacy of mouthwashes containing 0.2% and 0.12% chlorhexidine. Dent Res J (Isfahan). 2013;10(3):364–9. Rath SK, Singh M. Comparative clinical and microbiological efficacy of mouthwashes containing 0.2% and 0.12% chlorhexidine. Dent Res J (Isfahan). 2013;10(3):364–9.
17.
go back to reference Kaur H, Jain S, Kaur A. Comparative evaluation of the antiplaque effectiveness of green tea catechin mouthwash with chlorhexidine gluconate. J Indian Soc Periodontol. 2014;18(2):178–82.PubMedPubMedCentralCrossRef Kaur H, Jain S, Kaur A. Comparative evaluation of the antiplaque effectiveness of green tea catechin mouthwash with chlorhexidine gluconate. J Indian Soc Periodontol. 2014;18(2):178–82.PubMedPubMedCentralCrossRef
18.
go back to reference Trubiano JA, Stone CA, Grayson ML, Urbancic K, Slavin MA, Thursky KA, et al. The 3 Cs of antibiotic allergy—classification, cross-reactivity, and collaboration. J Allergy Clin Immunol Pract. 2017;5(6):1532–42.PubMedPubMedCentralCrossRef Trubiano JA, Stone CA, Grayson ML, Urbancic K, Slavin MA, Thursky KA, et al. The 3 Cs of antibiotic allergy—classification, cross-reactivity, and collaboration. J Allergy Clin Immunol Pract. 2017;5(6):1532–42.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Lin Y-S, Tsai Y-J, Tsay J-S, Lin J-K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem. 2003;51(7):8–10.CrossRef Lin Y-S, Tsai Y-J, Tsay J-S, Lin J-K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem. 2003;51(7):8–10.CrossRef
21.
go back to reference Vishnoi H, Bodla RB, Kant R. Green tea (Camellia Sinensis) and its antioxidant property: a review. Int J Pharm Sci Res. 2018;9(5):1723–36. Vishnoi H, Bodla RB, Kant R. Green tea (Camellia Sinensis) and its antioxidant property: a review. Int J Pharm Sci Res. 2018;9(5):1723–36.
22.
go back to reference Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2(4):152–9.CrossRef Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2(4):152–9.CrossRef
23.
go back to reference Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull. 2005;2:71–81.PubMedPubMedCentral Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull. 2005;2:71–81.PubMedPubMedCentral
24.
go back to reference Xu X, XD Z. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob Agents Chemoth. 2011;55(3):1229–36.CrossRef Xu X, XD Z. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob Agents Chemoth. 2011;55(3):1229–36.CrossRef
25.
go back to reference Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch Oral Biol. 2012;57(6):678–83.PubMedCrossRef Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch Oral Biol. 2012;57(6):678–83.PubMedCrossRef
26.
go back to reference Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W. Tea polyphenols as an antivirulence compound disrupt quorum-sensing regulated pathogenicity of Pseudomonas aeruginosa. Nat Publ Gr. 2015;1–12. Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W. Tea polyphenols as an antivirulence compound disrupt quorum-sensing regulated pathogenicity of Pseudomonas aeruginosa. Nat Publ Gr. 2015;1–12.
27.
go back to reference Castillo S, Heredia N, García S. Disinfectant disturb quorum-sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol. 2015;60:89–95.CrossRef Castillo S, Heredia N, García S. Disinfectant disturb quorum-sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol. 2015;60:89–95.CrossRef
28.
go back to reference Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014;5:1–8.CrossRef Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014;5:1–8.CrossRef
29.
go back to reference Raju R, Divya A, Rajendran G, John JR, John JR. Analogous assay between green tea mouthwash, listerine mouthwash and chlorhexidine mouthwash in plaque reduction, on orthodontic patients: a randomized cross-over study. Int J Commun Med Public Health. 2017;4(5):1429–35.CrossRef Raju R, Divya A, Rajendran G, John JR, John JR. Analogous assay between green tea mouthwash, listerine mouthwash and chlorhexidine mouthwash in plaque reduction, on orthodontic patients: a randomized cross-over study. Int J Commun Med Public Health. 2017;4(5):1429–35.CrossRef
30.
go back to reference Anil KG, Manohar B, Meenakshi S, Mamta G, Abhishek Khairwa RG. Effect of green tea mouth rinse on emopen Streptococcus mutansemclose in plaque and saliva in children: an emopenin vivoemclose study. J Indian Soc Pedod Prev Dent. 2017;25(1):41–6. Anil KG, Manohar B, Meenakshi S, Mamta G, Abhishek Khairwa RG. Effect of green tea mouth rinse on emopen Streptococcus mutansemclose in plaque and saliva in children: an emopenin vivoemclose study. J Indian Soc Pedod Prev Dent. 2017;25(1):41–6.
31.
go back to reference Awadalla HI, Ragab MH, Bassuoni MW, Fayed MT, Abbas MO. A pilot study of the role of green tea use on oral health. Int J Dent Hyg. 2011;9(2):110–6.PubMedCrossRef Awadalla HI, Ragab MH, Bassuoni MW, Fayed MT, Abbas MO. A pilot study of the role of green tea use on oral health. Int J Dent Hyg. 2011;9(2):110–6.PubMedCrossRef
32.
go back to reference Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020;28(4):304–14.PubMedCrossRef Benarroch JM, Asally M. The microbiologist’s guide to membrane potential dynamics. Trends Microbiol. 2020;28(4):304–14.PubMedCrossRef
33.
go back to reference Sionov RV, Tsavdaridou D, Aqawi M, Zaks B, Steinberg D, Shalish M. Tooth mousse containing casein phosphopeptide-amorphous calcium phosphate prevents biofilm formation of Streptococcus mutans. BMC Oral Health. 2021;21(1):136.PubMedPubMedCentralCrossRef Sionov RV, Tsavdaridou D, Aqawi M, Zaks B, Steinberg D, Shalish M. Tooth mousse containing casein phosphopeptide-amorphous calcium phosphate prevents biofilm formation of Streptococcus mutans. BMC Oral Health. 2021;21(1):136.PubMedPubMedCentralCrossRef
34.
go back to reference Suele J, Korosi T, Hucker A, Varga L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Brazilian J Microbiol. 2014;45(3):1023–30.CrossRef Suele J, Korosi T, Hucker A, Varga L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Brazilian J Microbiol. 2014;45(3):1023–30.CrossRef
35.
go back to reference Cohen-berneron J, Steinberg D, Featherstone JDB. Sustained effects of blue light on Streptococcus mutans in regrown biofilm. Lasers Med Sci. 2016;31(3):445–52.PubMedCrossRef Cohen-berneron J, Steinberg D, Featherstone JDB. Sustained effects of blue light on Streptococcus mutans in regrown biofilm. Lasers Med Sci. 2016;31(3):445–52.PubMedCrossRef
36.
go back to reference George A, O’Toole A. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:2437. George A, O’Toole A. Microtiter dish biofilm formation assay. J Vis Exp. 2011;47:2437.
37.
go back to reference Giardino L, Del Fabbro M, Cesario F, Fernandes FS, Andrade FB. Antimicrobial effectiveness of combinations of oxidant and chelating agents in infected dentine: an ex vivo confocal laser scanning microscopy study. Int Endod J. 2018;51(4):448–56.PubMedCrossRef Giardino L, Del Fabbro M, Cesario F, Fernandes FS, Andrade FB. Antimicrobial effectiveness of combinations of oxidant and chelating agents in infected dentine: an ex vivo confocal laser scanning microscopy study. Int Endod J. 2018;51(4):448–56.PubMedCrossRef
38.
go back to reference Feldman M, Ginsburg I, Al-quntar A, Steinberg D. Thiazolidinedione-8 alters symbiotic relationship in C. albicans - S. mutans dual species biofilm. Front Microbiol. 2016;10(7):140. Feldman M, Ginsburg I, Al-quntar A, Steinberg D. Thiazolidinedione-8 alters symbiotic relationship in C. albicans - S. mutans dual species biofilm. Front Microbiol. 2016;10(7):140.
39.
go back to reference Aqawi M, Gallily R, Sionov RV, Zaks B, Friedman M. Cannabigerol prevents quorum sensing and biofilm formation of Vibrio harveyi. Front Microbial. 2020;11:858.CrossRef Aqawi M, Gallily R, Sionov RV, Zaks B, Friedman M. Cannabigerol prevents quorum sensing and biofilm formation of Vibrio harveyi. Front Microbial. 2020;11:858.CrossRef
40.
go back to reference Banerjee S, Sionov RV, Feldman M, Smoum R, Mechoulam R, Steinberg D. Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci Rep. 2021;11(1):8690.PubMedPubMedCentralCrossRef Banerjee S, Sionov RV, Feldman M, Smoum R, Mechoulam R, Steinberg D. Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci Rep. 2021;11(1):8690.PubMedPubMedCentralCrossRef
41.
go back to reference Shriparna B, Rithesh K, Savita SSB. Comparative evaluation of the effect of green tea, listerine and chlorhexidine mouth washes in gingivitis patients: a randomized controlled trial comparative evaluation of the effect of green tea, listerine and chlorhexidine mouth washes in gingivitis. Sch J Dent Sci. 2015;2(1):104–12. Shriparna B, Rithesh K, Savita SSB. Comparative evaluation of the effect of green tea, listerine and chlorhexidine mouth washes in gingivitis patients: a randomized controlled trial comparative evaluation of the effect of green tea, listerine and chlorhexidine mouth washes in gingivitis. Sch J Dent Sci. 2015;2(1):104–12.
42.
go back to reference Hirasawa M, Takada K, Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 2006;40(3):265–70.PubMedCrossRef Hirasawa M, Takada K, Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 2006;40(3):265–70.PubMedCrossRef
43.
go back to reference Nozaki A, Hori M, Kimura T, Ito H, Hatano T. Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism. Chem Pharm Bull (Tokyo). 2009;57(2):224–8.CrossRef Nozaki A, Hori M, Kimura T, Ito H, Hatano T. Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism. Chem Pharm Bull (Tokyo). 2009;57(2):224–8.CrossRef
44.
go back to reference Hara K, Ohara M, Hayashi I, Hino T, Nishimura R, Iwasaki Y, Ogawa T, Ohyama Y, Sugiyama M, Amano H. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci. 2012;120(2):132–9.PubMedCrossRef Hara K, Ohara M, Hayashi I, Hino T, Nishimura R, Iwasaki Y, Ogawa T, Ohyama Y, Sugiyama M, Amano H. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci. 2012;120(2):132–9.PubMedCrossRef
45.
go back to reference Xu Z, Hao N, Li L, Zhang Y, Yu L, Jiang L, Sui X. Valorization of soy whey wastewater: how epigallocatechin-3- gallate regulates protein precipitation. ACS Sustain Chem Eng. 2019;7:15504–13.CrossRef Xu Z, Hao N, Li L, Zhang Y, Yu L, Jiang L, Sui X. Valorization of soy whey wastewater: how epigallocatechin-3- gallate regulates protein precipitation. ACS Sustain Chem Eng. 2019;7:15504–13.CrossRef
46.
go back to reference Melok AL, Lee HL, Mohamed YS, Chu T. Green tea polyphenol epigallocatechin-3-sallate-stearate inhibits the growth of Streptococcus mutans: a promising new approach in caries prevention. Dent J. 2018;6(3):38.CrossRef Melok AL, Lee HL, Mohamed YS, Chu T. Green tea polyphenol epigallocatechin-3-sallate-stearate inhibits the growth of Streptococcus mutans: a promising new approach in caries prevention. Dent J. 2018;6(3):38.CrossRef
49.
go back to reference Han S, Abiko Y, Luo Y, Zhang L, Takahashi N. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans streptococci. Caries Res. 2021;55:205–14.PubMedCrossRef Han S, Abiko Y, Luo Y, Zhang L, Takahashi N. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans streptococci. Caries Res. 2021;55:205–14.PubMedCrossRef
Metadata
Title
Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study
Authors
Mor Schneider-Rayman
Doron Steinberg
Ronit Vogt Sionov
Michael Friedman
Miriam Shalish
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01798-4

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue