Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Streptococci | Research

Effect of argon plasma pre-treatment of healing abutments on peri-implant microbiome and soft tissue integration: a proof-of-concept randomized study

Authors: Luigi Canullo, Mia Rakic, Emilio Corvino, Maria Burton, Janina A. Krumbeck, Aishani Chittoor Prem, Andrea Ravidà, Nenad Ignjatović, Anton Sculean, Maria Menini, Paolo Pesce

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Purpose

Biofilm-free implant surface is ultimate prerequisite for successful soft and bone tissue integration. Objective of the study was to estimate the effects of argon plasma healing abutment pre-treatment (PT) on peri-implant soft-tissue phenotype (PiSP), inflammation, plaque accumulation and the microbiome (PiM) between non-treated (NPT) and treated (PT) abutments following 3-months healing period. The hypothesis was that cell-conductive and antimicrobial properties of PT would yield optimal conditions for soft tissue integration.

Material and Methods

Two months following second-phase surgery, microbiological and clinical parameters were assessed around thirty-six healing abutments with two types of microtopography, smooth surface (MACHINED) and ultrathin threaded microsurface (ROUGH). A two level randomization schema was used to achieve equal distribution and abutments were randomly divided into rough and machined groups, and then divided into PT and NPT groups. PiM was assessed using next-generation DNA sequencing.

Results

PiM bacterial composition was highly diverse already two months post-implantation, consisting of key-stone pathogens, early and late colonizers, while the mycobiome was less diverse. PT was associated with lower plaque accumulation and inflammation without significant impact on PiSP, while in NPT clinical parameters were increased and associated with periopathogens. NPT mostly harbored late colonizers, while PT exerted higher abundance of early colonizers suggesting less advanced plaque formation. Interaction analysis in PT demonstrated S. mitis co-occurrence with pro-healthy Rothia dentocariosa and co-exclusion with Parvimonas micra, Porphyromonas endodontalis and Prevotella oris. PiSP parameters were generally similar between the groups, but significant association between PiM and keratinized mucosa width was observed in both groups, with remarkably more expressed diversity in NPT compared to PT. PT resulted in significantly lower BOP and PI around rough and machined abutments, respectively, without specific effect on PiM and PiSP.

Conclusions

PT contributed to significantly the less advanced biofilm accumulation and inflammation without specific effects on PiSP.
Appendix
Available only for authorised users
Literature
2.
go back to reference Berglundh T, Armitage G, Araujo MG, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol. 2018;45(Suppl 20):S286–91. https://doi.org/10.1111/jcpe.12957.CrossRef Berglundh T, Armitage G, Araujo MG, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol. 2018;45(Suppl 20):S286–91. https://​doi.​org/​10.​1111/​jcpe.​12957.CrossRef
6.
go back to reference Tonetti MS, Chapple ILC, Jepsen S, Sanz M. Primary and secondary prevention of periodontal and peri-implant diseases: introduction to, and objectives of the 11th European workshop on periodontology consensus conference. J Clin Periodontol. 2015;42(Suppl 16):S1-4. https://doi.org/10.1111/jcpe.12382.CrossRef Tonetti MS, Chapple ILC, Jepsen S, Sanz M. Primary and secondary prevention of periodontal and peri-implant diseases: introduction to, and objectives of the 11th European workshop on periodontology consensus conference. J Clin Periodontol. 2015;42(Suppl 16):S1-4. https://​doi.​org/​10.​1111/​jcpe.​12382.CrossRef
12.
17.
go back to reference Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.CrossRef Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.CrossRef
24.
go back to reference Ghinassi B, Di Baldassarre A, D’Addazio G, Traini T, Andrisani M, Di Vincenzo G, Gaggi G, Piatelli M, Caputi S, Sinjari B. Gingival response to dental implant: comparison study on the effects of new nanopored laser-treated vs. traditional healing abutments. Int J Mol Sci. 2020;21(17):6056.CrossRef Ghinassi B, Di Baldassarre A, D’Addazio G, Traini T, Andrisani M, Di Vincenzo G, Gaggi G, Piatelli M, Caputi S, Sinjari B. Gingival response to dental implant: comparison study on the effects of new nanopored laser-treated vs. traditional healing abutments. Int J Mol Sci. 2020;21(17):6056.CrossRef
35.
42.
go back to reference Canullo L, Radovanović S, Delibasic B, Blaya JA, Penarrocha D, Rakic M. The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making. Clin Oral Implants Res. 2017;28(5):512–9. https://doi.org/10.1111/clr.12828.CrossRef Canullo L, Radovanović S, Delibasic B, Blaya JA, Penarrocha D, Rakic M. The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making. Clin Oral Implants Res. 2017;28(5):512–9. https://​doi.​org/​10.​1111/​clr.​12828.CrossRef
64.
go back to reference Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000. 2014;66(1):255–73.CrossRef Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000. 2014;66(1):255–73.CrossRef
66.
go back to reference Sanz M, Dahlin C, Apatzidou D, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European workshop on periodontology on bone regeneration. J Clin Periodontol. 2019;46(Suppl 21):82–91. https://doi.org/10.1111/jcpe.13123.CrossRef Sanz M, Dahlin C, Apatzidou D, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European workshop on periodontology on bone regeneration. J Clin Periodontol. 2019;46(Suppl 21):82–91. https://​doi.​org/​10.​1111/​jcpe.​13123.CrossRef
67.
go back to reference Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000. 2015;68(1):182–216.CrossRef Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000. 2015;68(1):182–216.CrossRef
68.
go back to reference Giannobile WV, Lang NP, Tonetti MS. Osteology guidelines for oral and maxillofacial regeneration: clinical research. 1st Edition. Quintessence Publishing Co., Ltd, Great Britain; 2014. www.quintpub.co.uk Giannobile WV, Lang NP, Tonetti MS. Osteology guidelines for oral and maxillofacial regeneration: clinical research. 1st Edition. Quintessence Publishing Co., Ltd, Great Britain; 2014. www.​quintpub.​co.​uk
Metadata
Title
Effect of argon plasma pre-treatment of healing abutments on peri-implant microbiome and soft tissue integration: a proof-of-concept randomized study
Authors
Luigi Canullo
Mia Rakic
Emilio Corvino
Maria Burton
Janina A. Krumbeck
Aishani Chittoor Prem
Andrea Ravidà
Nenad Ignjatović
Anton Sculean
Maria Menini
Paolo Pesce
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02729-1

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue