Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Research

Strawberry notch homolog 2 regulates the response to interleukin-6 in the central nervous system

Authors: Taylor E. Syme, Magdalena Grill, Emina Hayashida, Barney Viengkhou, Iain L. Campbell, Markus J. Hofer

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

The cytokine interleukin-6 (IL-6) modulates a variety of inflammatory processes and, context depending, can mediate either pro- or anti-inflammatory effects. Excessive IL-6 signalling in the brain is associated with chronic inflammation resulting in neurodegeneration. Strawberry notch homolog 2 (Sbno2) is an IL-6-regulated gene whose function is largely unknown. Here we aimed to address this issue by investigating the impact of Sbno2 disruption in mice with IL-6-mediated neuroinflammation.

Methods

Mice with germline disruption of Sbno2 (Sbno2−/−) were generated and crossed with transgenic mice with chronic astrocyte production of IL-6 (GFAP-IL6). Phenotypic, molecular and transcriptomic analyses were performed on tissues and primary cell cultures to clarify the role of SBNO2 in IL-6-mediated neuroinflammation.

Results

We found Sbno2−/− mice to be viable and overtly normal. By contrast GFAP-IL6 × Sbno2−/− mice had more severe disease compared with GFAP-IL6 mice. This was evidenced by exacerbated neuroinflammation and neurodegeneration and enhanced IL-6-responsive gene expression. Cell culture experiments on primary astrocytes from Sbno2−/− mice further showed elevated and sustained transcript levels of a number of IL-6 stimulated genes. Notably, despite enhanced disease in vivo and gene expression both in vivo and in vitro, IL-6-stimulated gp130 pathway activation was reduced when Sbno2 is disrupted.

Conclusion

Based on these results, we propose a role for SBNO2 as a novel negative feedback regulator of IL-6 that restrains the excessive inflammatory actions of this cytokine in the brain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.PubMedCrossRef Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.PubMedCrossRef
2.
go back to reference Ley EJ, Clond MA, Singer MB, Shouhed D, Salim A. IL6 deficiency affects function after traumatic brain injury. J Surg Res. 2011;170(2):253–6.PubMedCrossRef Ley EJ, Clond MA, Singer MB, Shouhed D, Salim A. IL6 deficiency affects function after traumatic brain injury. J Surg Res. 2011;170(2):253–6.PubMedCrossRef
3.
go back to reference Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial–host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018;38(7):1349–68.PubMedCrossRef Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial–host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018;38(7):1349–68.PubMedCrossRef
4.
go back to reference Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMedCrossRef Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.PubMedCrossRef
5.
go back to reference Fujihara K, Bennett JL, de Seze J, Haramura M, Kleiter I, Weinshenker BG, et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol Neuroimmunol Neuroinflamm. 2020;7(5): e841.PubMedPubMedCentralCrossRef Fujihara K, Bennett JL, de Seze J, Haramura M, Kleiter I, Weinshenker BG, et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol Neuroimmunol Neuroinflamm. 2020;7(5): e841.PubMedPubMedCentralCrossRef
6.
go back to reference Maimone D, Guazzi GC, Annunziata P. IL-6 detection in multiple sclerosis brain. J Neurol Sci. 1997;146(1):59–65.PubMedCrossRef Maimone D, Guazzi GC, Annunziata P. IL-6 detection in multiple sclerosis brain. J Neurol Sci. 1997;146(1):59–65.PubMedCrossRef
7.
go back to reference Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, et al. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer’s disease. Brain Behav Immun. 2019;82:145–59.PubMedCrossRef Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, et al. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer’s disease. Brain Behav Immun. 2019;82:145–59.PubMedCrossRef
8.
go back to reference Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J Neurochem. 2002;83(1):167–75.PubMedCrossRef Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J Neurochem. 2002;83(1):167–75.PubMedCrossRef
9.
go back to reference Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci. 1998;154(2):194–9.PubMedCrossRef Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci. 1998;154(2):194–9.PubMedCrossRef
10.
go back to reference West AJ, Tsui V, Stylli SS, Nguyen HPT, Morokoff AP, Kaye AH, et al. The role of interleukin-6-STAT3 signalling in glioblastoma (Review). Oncol Lett. 2018;16(4):4095–104.PubMedPubMedCentral West AJ, Tsui V, Stylli SS, Nguyen HPT, Morokoff AP, Kaye AH, et al. The role of interleukin-6-STAT3 signalling in glioblastoma (Review). Oncol Lett. 2018;16(4):4095–104.PubMedPubMedCentral
11.
go back to reference Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863(6, Part A):1218–27.PubMedCrossRef Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863(6, Part A):1218–27.PubMedCrossRef
12.
go back to reference Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, et al. Interleukin-6, a mental cytokine. Brain Res Rev. 2011;67(1–2):157–83.PubMedCrossRef Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, et al. Interleukin-6, a mental cytokine. Brain Res Rev. 2011;67(1–2):157–83.PubMedCrossRef
13.
go back to reference Campbell IL, Erta M, Lim S, Frausto R, May U, Rose-John S, et al. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci. 2014;34(7):2503–13.PubMedPubMedCentralCrossRef Campbell IL, Erta M, Lim S, Frausto R, May U, Rose-John S, et al. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci. 2014;34(7):2503–13.PubMedPubMedCentralCrossRef
14.
go back to reference Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28(5): 115327.PubMedCrossRef Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28(5): 115327.PubMedCrossRef
15.
go back to reference Sanz E, Hofer MJ, Unzeta M, Campbell IL. Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia. 2008;56(2):190–9.PubMedCrossRef Sanz E, Hofer MJ, Unzeta M, Campbell IL. Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia. 2008;56(2):190–9.PubMedCrossRef
16.
go back to reference Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone M, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA. 1993;90(21):10061–5.PubMedPubMedCentralCrossRef Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone M, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA. 1993;90(21):10061–5.PubMedPubMedCentralCrossRef
17.
go back to reference Campbell IL. Structural and functional impact of the transgenic expression of cytokines in the CNS. Ann N Y Acad Sci. 1998;840(1):83–96.PubMedCrossRef Campbell IL. Structural and functional impact of the transgenic expression of cytokines in the CNS. Ann N Y Acad Sci. 1998;840(1):83–96.PubMedCrossRef
18.
go back to reference Chiang C-S, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994;16(3–4):212–21.PubMedCrossRef Chiang C-S, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994;16(3–4):212–21.PubMedCrossRef
19.
go back to reference Brett FM, Mizisin AP, Powell HC, Campbell IL. Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol. 1995;54(6):766–75.PubMedCrossRef Brett FM, Mizisin AP, Powell HC, Campbell IL. Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol. 1995;54(6):766–75.PubMedCrossRef
20.
go back to reference Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E, et al. Site-specific production of IL-6 in the central nervous system retargets and enchances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2009;183:2079–88.PubMedCrossRef Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E, et al. Site-specific production of IL-6 in the central nervous system retargets and enchances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2009;183:2079–88.PubMedCrossRef
21.
go back to reference Tsuda L, Nagaraj R, Zipursky SL, Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell. 2002;110(5):625–37.PubMedCrossRef Tsuda L, Nagaraj R, Zipursky SL, Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell. 2002;110(5):625–37.PubMedCrossRef
22.
go back to reference Simms CL. Characterization of let-765/nsh-1 and its role in RAS signalling in Caenorhabditis elegans [Doctoral thesis]. British Columbia, Canada: Simon Fraser University; 2009. Simms CL. Characterization of let-765/nsh-1 and its role in RAS signalling in Caenorhabditis elegans [Doctoral thesis]. British Columbia, Canada: Simon Fraser University; 2009.
23.
go back to reference Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y. Function of strawberry notch family genes in the zebrafish brain development. Kobe J Med Sci. 2011;56(5):E220–30.PubMed Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y. Function of strawberry notch family genes in the zebrafish brain development. Kobe J Med Sci. 2011;56(5):E220–30.PubMed
24.
go back to reference Watanabe Y, Miyasaka KY, Kubo A, Kida YS, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135.PubMedPubMedCentralCrossRef Watanabe Y, Miyasaka KY, Kubo A, Kida YS, Nakagawa O, Hirate Y, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci Rep. 2017;7:46135.PubMedPubMedCentralCrossRef
25.
go back to reference Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, et al. Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med. 2013;210(10):1947–60.PubMedPubMedCentralCrossRef Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, et al. Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med. 2013;210(10):1947–60.PubMedPubMedCentralCrossRef
26.
go back to reference Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife. 2016;5: e17061.PubMedPubMedCentralCrossRef Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife. 2016;5: e17061.PubMedPubMedCentralCrossRef
27.
go back to reference Grill M, Syme TE, Noçon AL, Lu AZX, Hancock D, Rose-John S, et al. Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia. 2015;63(10):1738–52.PubMedPubMedCentralCrossRef Grill M, Syme TE, Noçon AL, Lu AZX, Hancock D, Rose-John S, et al. Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia. 2015;63(10):1738–52.PubMedPubMedCentralCrossRef
28.
go back to reference El Kasmi KC, Smith AM, Williams L, Neale G, Panopolous A, Watowich SS, et al. Cutting edge: a transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol. 2007;179(11):7215–9.PubMedCrossRef El Kasmi KC, Smith AM, Williams L, Neale G, Panopolous A, Watowich SS, et al. Cutting edge: a transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol. 2007;179(11):7215–9.PubMedCrossRef
29.
go back to reference Jing H, Dove C, Zhang Y, Price S, Koneti R, Su HC, editors. Novel immunodysregulation disorder caused by loss-of-function mutations in SBNO2. Clinical Immunology Society 2016 Annual Meeting; 2016; Boston, Massachusetts, USA. Jing H, Dove C, Zhang Y, Price S, Koneti R, Su HC, editors. Novel immunodysregulation disorder caused by loss-of-function mutations in SBNO2. Clinical Immunology Society 2016 Annual Meeting; 2016; Boston, Massachusetts, USA.
30.
go back to reference Van Den Bossche MJ, Strazisar M, Cammaerts S, Liekens AM, Vandeweyer G, Depreeuw V, et al. Identification of rare copy number variants in high burden schizophrenia families. Am J Med Genet B Neuropsychiatr Genet. 2013;162(3):273–82.CrossRef Van Den Bossche MJ, Strazisar M, Cammaerts S, Liekens AM, Vandeweyer G, Depreeuw V, et al. Identification of rare copy number variants in high burden schizophrenia families. Am J Med Genet B Neuropsychiatr Genet. 2013;162(3):273–82.CrossRef
31.
go back to reference Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, et al. Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012;79(3):221–8.PubMedPubMedCentralCrossRef Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, et al. Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012;79(3):221–8.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflamm. 2016;13(1):117.CrossRef Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflamm. 2016;13(1):117.CrossRef
34.
go back to reference Metten P, Best KL, Cameron AJ, Saultz AB, Zuraw JM, Yu C-H, et al. Observer-rated ataxia: rating scales for assessment of genetic differences in ethanol-induced intoxication in mice. J Appl Physiol. 2004;97(1):360–8.PubMedCrossRef Metten P, Best KL, Cameron AJ, Saultz AB, Zuraw JM, Yu C-H, et al. Observer-rated ataxia: rating scales for assessment of genetic differences in ethanol-induced intoxication in mice. J Appl Physiol. 2004;97(1):360–8.PubMedCrossRef
35.
go back to reference Jung SR, Ashhurst TM, West PK, Viengkhou B, King NJC, Campbell IL, et al. Contribution of STAT1 to innate and adaptive immunity during type I interferon-mediated lethal virus infection. PLoS Path. 2020;16(4): e1008525.CrossRef Jung SR, Ashhurst TM, West PK, Viengkhou B, King NJC, Campbell IL, et al. Contribution of STAT1 to innate and adaptive immunity during type I interferon-mediated lethal virus infection. PLoS Path. 2020;16(4): e1008525.CrossRef
36.
go back to reference Carter S, Muller M, Manders P, Campbell I. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007;55:1728–39.PubMedCrossRef Carter S, Muller M, Manders P, Campbell I. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007;55:1728–39.PubMedCrossRef
37.
go back to reference Fischer M, Goldschmitt J, Peschel C, Brakenhoff JP, Kallen KJ, Wollmer A, et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat Biotechnol. 1997;15(2):142–5.PubMedCrossRef Fischer M, Goldschmitt J, Peschel C, Brakenhoff JP, Kallen KJ, Wollmer A, et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat Biotechnol. 1997;15(2):142–5.PubMedCrossRef
38.
go back to reference Ousman SS, Campbell IL. Regulation of murine interferon regulatory factor (IRF) gene expression in the central nervous system determined by multiprobe RNase protection assay. Methods Mol Med. 2005;116:115–34.PubMed Ousman SS, Campbell IL. Regulation of murine interferon regulatory factor (IRF) gene expression in the central nervous system determined by multiprobe RNase protection assay. Methods Mol Med. 2005;116:115–34.PubMed
39.
go back to reference Hubbell E, Liu W-M, Mei R. Robust estimators for expression analysis. Bioinformatics. 2002;18(12):1585–92.PubMedCrossRef Hubbell E, Liu W-M, Mei R. Robust estimators for expression analysis. Bioinformatics. 2002;18(12):1585–92.PubMedCrossRef
41.
go back to reference Finger JH, Smith CM, Hayamizu TF, McCright IJ, Xu J, Law M, et al. The mouse gene expression database (GXD): 2017 update. Nucleic Acids Res. 2016;45(D1):D730–6.PubMedPubMedCentralCrossRef Finger JH, Smith CM, Hayamizu TF, McCright IJ, Xu J, Law M, et al. The mouse gene expression database (GXD): 2017 update. Nucleic Acids Res. 2016;45(D1):D730–6.PubMedPubMedCentralCrossRef
42.
go back to reference Mi H, Muruganujan A, Ebert D, Huang, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2018;47(D1):D419–26.PubMedCentralCrossRef Mi H, Muruganujan A, Ebert D, Huang, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2018;47(D1):D419–26.PubMedCentralCrossRef
43.
go back to reference Barnum SR, Jones JL, Müller-Ladner U, Samimi A, Campbell IL. Chronic complement C3 gene expression in the CNS of transgenic mice with astrocyte-targeted interleukin-6 expression. Glia. 1996;18(2):107–17.PubMedCrossRef Barnum SR, Jones JL, Müller-Ladner U, Samimi A, Campbell IL. Chronic complement C3 gene expression in the CNS of transgenic mice with astrocyte-targeted interleukin-6 expression. Glia. 1996;18(2):107–17.PubMedCrossRef
44.
go back to reference Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, et al. Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006;34(suppl_2):W645–50.PubMedPubMedCentralCrossRef Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, et al. Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006;34(suppl_2):W645–50.PubMedPubMedCentralCrossRef
45.
go back to reference Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41.PubMedPubMedCentralCrossRef Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41.PubMedPubMedCentralCrossRef
46.
go back to reference West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia. 2019;67(10):1821–41.PubMed West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia. 2019;67(10):1821–41.PubMed
47.
go back to reference Milner R, Campbell IL. Increased expression of the β4 and α5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-α in the central nervous system. Mol Cell Neurosci. 2006;33(4):429–40.PubMedPubMedCentralCrossRef Milner R, Campbell IL. Increased expression of the β4 and α5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-α in the central nervous system. Mol Cell Neurosci. 2006;33(4):429–40.PubMedPubMedCentralCrossRef
48.
go back to reference Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA. 1997;94(4):1500–5.PubMedPubMedCentralCrossRef Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA. 1997;94(4):1500–5.PubMedPubMedCentralCrossRef
49.
go back to reference Coyle-Thompson CA, Banerjee U. The strawberry-notch gene functions with notch in common developmental pathways. Development. 1993;119(2):377–95.PubMedCrossRef Coyle-Thompson CA, Banerjee U. The strawberry-notch gene functions with notch in common developmental pathways. Development. 1993;119(2):377–95.PubMedCrossRef
50.
go back to reference Starr R, Willson TA, Viney EM, Murray LJL, Rayner JR, Jenkins BJ, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387(6636):917–21.PubMedCrossRef Starr R, Willson TA, Viney EM, Murray LJL, Rayner JR, Jenkins BJ, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387(6636):917–21.PubMedCrossRef
51.
go back to reference Sommer U, Schmid C, Sobota RM, Lehmann U, Stevenson NJ, Johnston JA, et al. Mechanisms of SOCS3 phosphorylation upon interleukin-6 stimulation: contributions of src- and receptor-tyrosine kinases. J Biol Chem. 2005;280(36):31478–88.PubMedCrossRef Sommer U, Schmid C, Sobota RM, Lehmann U, Stevenson NJ, Johnston JA, et al. Mechanisms of SOCS3 phosphorylation upon interleukin-6 stimulation: contributions of src- and receptor-tyrosine kinases. J Biol Chem. 2005;280(36):31478–88.PubMedCrossRef
52.
54.
go back to reference Chung CD, Liao J, Liu B, Rao, Jay P, Berta P, et al. Specific inhibition of STAT3 signal transduction by PIAS3. Science. 1997;278(5344):1803–5.PubMedCrossRef Chung CD, Liao J, Liu B, Rao, Jay P, Berta P, et al. Specific inhibition of STAT3 signal transduction by PIAS3. Science. 1997;278(5344):1803–5.PubMedCrossRef
55.
go back to reference Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol. 2004;5:891–8.PubMedCrossRef Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol. 2004;5:891–8.PubMedCrossRef
56.
go back to reference Ray S, Boldogh I, Brasier AR. STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology. 2005;129(5):1616–32.PubMedCrossRef Ray S, Boldogh I, Brasier AR. STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology. 2005;129(5):1616–32.PubMedCrossRef
57.
go back to reference Ray S, Lee C, Hou T, Boldogh I, Brasier AR. Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res. 2008;36(13):4510–20.PubMedPubMedCentralCrossRef Ray S, Lee C, Hou T, Boldogh I, Brasier AR. Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res. 2008;36(13):4510–20.PubMedPubMedCentralCrossRef
58.
go back to reference Wang LH, Yang XY, Zhang, Huang J, Hou J, Li J, et al. Transcriptional inactivation of STAT3 by PPARγ suppresses IL-6-responsive multiple myeloma cells. Immunity. 2004;20(2):205–18.PubMedCrossRef Wang LH, Yang XY, Zhang, Huang J, Hou J, Li J, et al. Transcriptional inactivation of STAT3 by PPARγ suppresses IL-6-responsive multiple myeloma cells. Immunity. 2004;20(2):205–18.PubMedCrossRef
59.
go back to reference Kino T, Rice KC, Chrousos GP. The PPARδ agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition. Eur J Clin Invest. 2007;37(5):425–33.PubMedCrossRef Kino T, Rice KC, Chrousos GP. The PPARδ agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition. Eur J Clin Invest. 2007;37(5):425–33.PubMedCrossRef
60.
go back to reference Mansouri RM, Bauge E, Staels B, Gervois P. Systemic and distal repercussions of liver-specific peroxisome proliferator-activated receptor-alpha control of the acute-phase response. Endocrinology. 2008;149(6):3215–23.PubMedCrossRef Mansouri RM, Bauge E, Staels B, Gervois P. Systemic and distal repercussions of liver-specific peroxisome proliferator-activated receptor-alpha control of the acute-phase response. Endocrinology. 2008;149(6):3215–23.PubMedCrossRef
61.
go back to reference van der Meer DL, Degenhardt T, Vaisanen S, de Groot PJ, Heinaniemi M, de Vries SC, et al. Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 2010;38(9):2839–50.PubMedPubMedCentralCrossRef van der Meer DL, Degenhardt T, Vaisanen S, de Groot PJ, Heinaniemi M, de Vries SC, et al. Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 2010;38(9):2839–50.PubMedPubMedCentralCrossRef
62.
go back to reference Wiesauer I, Gaumannmuller C, Steinparzer I, Strobl B, Kovarik P. Promoter occupancy of STAT1 in interferon responses is regulated by processive transcription. Mol Cell Biol. 2015;35(4):716–27.PubMedPubMedCentralCrossRef Wiesauer I, Gaumannmuller C, Steinparzer I, Strobl B, Kovarik P. Promoter occupancy of STAT1 in interferon responses is regulated by processive transcription. Mol Cell Biol. 2015;35(4):716–27.PubMedPubMedCentralCrossRef
63.
go back to reference Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.PubMedCrossRef Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.PubMedCrossRef
64.
go back to reference Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.PubMedCrossRef Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.PubMedCrossRef
65.
go back to reference Adelson JD, Sapp RW, Brott BK, Lee H, Miyamichi K, Luo L, et al. Developmental sculpting of intracortical circuits by MHC Class I H2-Db and H2-Kb. Cereb Cortex. 2016;26(4):1453–63.PubMedCrossRef Adelson JD, Sapp RW, Brott BK, Lee H, Miyamichi K, Luo L, et al. Developmental sculpting of intracortical circuits by MHC Class I H2-Db and H2-Kb. Cereb Cortex. 2016;26(4):1453–63.PubMedCrossRef
66.
go back to reference Cebrian C, Loike JD, Sulzer D. Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases. Front Neuroanat. 2014;8:114.PubMedPubMedCentralCrossRef Cebrian C, Loike JD, Sulzer D. Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases. Front Neuroanat. 2014;8:114.PubMedPubMedCentralCrossRef
67.
go back to reference Cebrian C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.PubMedCrossRef Cebrian C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633.PubMedCrossRef
68.
go back to reference Nardo G, Trolese MC, Bendotti C. Major histocompatibility complex I expression by motor neurons and its implication in amyotrophic lateral sclerosis. Front Neurol. 2016;7:15.CrossRef Nardo G, Trolese MC, Bendotti C. Major histocompatibility complex I expression by motor neurons and its implication in amyotrophic lateral sclerosis. Front Neurol. 2016;7:15.CrossRef
69.
go back to reference Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, et al. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron. 2009;64(4):463–70.PubMedPubMedCentralCrossRef Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, et al. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron. 2009;64(4):463–70.PubMedPubMedCentralCrossRef
71.
go back to reference Zar J. Biostatistical analysis. 2nd ed. New Jersey: Prentice-Hall; 1984. Zar J. Biostatistical analysis. 2nd ed. New Jersey: Prentice-Hall; 1984.
Metadata
Title
Strawberry notch homolog 2 regulates the response to interleukin-6 in the central nervous system
Authors
Taylor E. Syme
Magdalena Grill
Emina Hayashida
Barney Viengkhou
Iain L. Campbell
Markus J. Hofer
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02475-1

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue