Skip to main content
Top
Published in: Osteoporosis International 6/2011

01-06-2011 | Bone Quality Seminars: Bone Fracture Healing and Strengthening

Strategies for improving the efficacy of bioengineered bone constructs: a perspective

Authors: H. Petite, K. Vandamme, L. Monfoulet, D. Logeart-Avramoglou

Published in: Osteoporosis International | Issue 6/2011

Login to get access

Abstract

Bioengineered bone scaffolds are intended for use in large bone defects. Successful bone constructs should stimulate and support both the onset and the continuance of bone ingrowth. In an attempt to improve their performance and to compete with the one of autologous bone grafts, a growing symbiosis at the biological and material level is required. Recent advances have been made to further exploit the osteogenic potential of MSCs in scaffold development. Current research encompasses new strategies for reducing cell death after implantation and the manufacturing of tailored, instructive scaffolds.
Literature
1.
go back to reference Giannoudis PV, Pountos I (2005) Tissue regeneration. The past, the present and the future. Injury 36(Suppl 4):S2–S5PubMedCrossRef Giannoudis PV, Pountos I (2005) Tissue regeneration. The past, the present and the future. Injury 36(Suppl 4):S2–S5PubMedCrossRef
2.
3.
go back to reference Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C (2002) Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50(3):510–516, discussion 516–7PubMed Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C (2002) Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50(3):510–516, discussion 516–7PubMed
4.
go back to reference Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed
7.
go back to reference Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedCrossRef Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedCrossRef
8.
go back to reference Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884PubMedCrossRef Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884PubMedCrossRef
9.
go back to reference Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62PubMed Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62PubMed
10.
go back to reference Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82PubMedCrossRef Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170(2–3):73–82PubMedCrossRef
11.
go back to reference Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype. Br J Haematol 122(3):506–517PubMedCrossRef Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype. Br J Haematol 122(3):506–517PubMedCrossRef
12.
go back to reference Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635PubMedCrossRef Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635PubMedCrossRef
13.
go back to reference Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRef Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRef
14.
go back to reference Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619PubMedCrossRef Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619PubMedCrossRef
15.
go back to reference Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9(1):72–84PubMedCrossRef Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9(1):72–84PubMedCrossRef
16.
go back to reference Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355 Suppl:S247–S256PubMedCrossRef Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355 Suppl:S247–S256PubMedCrossRef
17.
go back to reference Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134PubMedCrossRef Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134PubMedCrossRef
18.
go back to reference Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337PubMedCrossRef Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337PubMedCrossRef
19.
go back to reference Bensaïd W, Oudina K, Viateau V, Potier E, Bousson V, Blanchat C et al (2005) De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 11(5–6):814–824PubMedCrossRef Bensaïd W, Oudina K, Viateau V, Potier E, Bousson V, Blanchat C et al (2005) De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 11(5–6):814–824PubMedCrossRef
20.
go back to reference Petite H, Viateau V, Bensaïd W, Meunier A, de Pollack C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963PubMedCrossRef Petite H, Viateau V, Bensaïd W, Meunier A, de Pollack C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963PubMedCrossRef
21.
go back to reference Marie PJ, Fromigué O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1(4):539–548PubMedCrossRef Marie PJ, Fromigué O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1(4):539–548PubMedCrossRef
22.
go back to reference Logeart-Avramoglou D, Oudina K, Bourguignon M, Delpierre L, Nicola MA, Bensidhoum M et al (2009) In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs. Tissue Eng Part C Methods 16(3):447–458CrossRef Logeart-Avramoglou D, Oudina K, Bourguignon M, Delpierre L, Nicola MA, Bensidhoum M et al (2009) In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs. Tissue Eng Part C Methods 16(3):447–458CrossRef
23.
go back to reference Dégano IR, Vilalta M, Bagó JR, Matthies AM, Hubbell JA, Dimitriou H et al (2008) Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials 29(4):427–437PubMedCrossRef Dégano IR, Vilalta M, Bagó JR, Matthies AM, Hubbell JA, Dimitriou H et al (2008) Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials 29(4):427–437PubMedCrossRef
24.
go back to reference Haider HKH, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45(4):554–566PubMedCrossRef Haider HKH, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45(4):554–566PubMedCrossRef
25.
go back to reference Tögel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295(1):F315–F321PubMedCrossRef Tögel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295(1):F315–F321PubMedCrossRef
26.
27.
go back to reference Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138(4):745–753PubMedCrossRef Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138(4):745–753PubMedCrossRef
28.
go back to reference Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W (1986) Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 46(10):5320–5329PubMed Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W (1986) Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 46(10):5320–5329PubMed
29.
go back to reference Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, et al. (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med. doi:10.1111/j.1582-4934.2010.01138.x Deschepper M, Oudina K, David B, Myrtil V, Collet C, Bensidhoum M, et al. (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med. doi:10.​1111/​j.​1582-4934.​2010.​01138.​x
30.
go back to reference Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39, discussion 39–40PubMed Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39, discussion 39–40PubMed
31.
go back to reference Logeart-Avramoglou D (2005) Delivery of osteogenic regulatory growth factors. In: Petite H, Quarto R (eds) Tissue engineering of bone. Landes, Bioscience, pp 107–125 Logeart-Avramoglou D (2005) Delivery of osteogenic regulatory growth factors. In: Petite H, Quarto R (eds) Tissue engineering of bone. Landes, Bioscience, pp 107–125
32.
go back to reference Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC et al (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106(44):18587–18591PubMedCrossRef Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC et al (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106(44):18587–18591PubMedCrossRef
33.
go back to reference Won Kim H, Haider HK (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168 Won Kim H, Haider HK (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168
34.
go back to reference Theus MH, Wei L (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210(2):656–670 Theus MH, Wei L (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210(2):656–670
35.
go back to reference Liu X, Hou J (2009) Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 18(7):947–954 Liu X, Hou J (2009) Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev 18(7):947–954
36.
go back to reference Xu R, Chen J (2008) Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103(1):256–269 Xu R, Chen J (2008) Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103(1):256–269
37.
go back to reference Pasha Z, Wang Y (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142 Pasha Z, Wang Y (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77(1):134–142
38.
go back to reference Giannoni P, Scaglione S (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 16(2):489–499 Giannoni P, Scaglione S (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 16(2):489–499
39.
go back to reference Zeng B, Ren X (2008) Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement. Cell Biol Int 32(10):1256–1264 Zeng B, Ren X (2008) Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement. Cell Biol Int 32(10):1256–1264
40.
go back to reference Song H, Kwon K (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19(3):402–407 Song H, Kwon K (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19(3):402–407
41.
go back to reference Deng J, Han Y (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15(4):463–473 Deng J, Han Y (2010) Overexpressing cellular repressor of E1A-stimulated genes protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt. Apoptosis 15(4):463–473
42.
go back to reference Wang F, Li Z (2009) Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 10(9):2609–2618 Wang F, Li Z (2009) Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 10(9):2609–2618
Metadata
Title
Strategies for improving the efficacy of bioengineered bone constructs: a perspective
Authors
H. Petite
K. Vandamme
L. Monfoulet
D. Logeart-Avramoglou
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 6/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-011-1614-1

Other articles of this Issue 6/2011

Osteoporosis International 6/2011 Go to the issue

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Macroscopic and microscopic process of long bone fracture healing

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Biomechanics and tissue engineering