Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2016

Open Access 01-10-2016 | Research Article

Strain Differences Determine the Suitability of Animal Models for Noninvasive In Vivo Beta Cell Mass Determination with Radiolabeled Exendin

Authors: Stefanie M. A. Willekens, Lieke Joosten, Otto C. Boerman, Alexander Balhuizen, Decio L. Eizirik, Martin Gotthardt, Maarten Brom

Published in: Molecular Imaging and Biology | Issue 5/2016

Login to get access

Abstract

Purpose

Noninvasive beta cell mass (BCM) quantification is a crucial tool to understand diabetes development and progression. [111In]exendin is a promising agent for in vivo beta cell imaging, but tracer testing has been hampered by the lack of well-defined rodent models.

Procedures

Biodistribution and pancreatic uptake of [111In]exendin were compared in rats and mice. In selected models, the amount of [111In]exendin accumulation in the pancreas and other organs was determined using a model of alloxan-induced beta cell loss. GLP-1R expression levels were analyzed by RT-PCR and immunohistochemistry.

Results

Namely Brown Norway rats showed beta-cell-specific tracer accumulation and favorable pancreas-to-background ratios for noninvasive BCM determination. Mice displayed receptor-mediated [111In]exendin uptake in endocrine and exocrine pancreas, in spite of very low GLP-1R expression in exocrine tissue.

Conclusions

Rats display better characteristics for in vivo BCM determination than mice and are suggested as a more adequate model for humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lohr M, Kloppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762CrossRefPubMed Lohr M, Kloppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762CrossRefPubMed
2.
go back to reference Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed
3.
go back to reference Steele C, Hagopian WA, Gitelman S et al (2004) Insulin secretion in type 1 diabetes. Diabetes 53:426–433CrossRefPubMed Steele C, Hagopian WA, Gitelman S et al (2004) Insulin secretion in type 1 diabetes. Diabetes 53:426–433CrossRefPubMed
4.
go back to reference Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107CrossRefPubMed Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107CrossRefPubMed
5.
go back to reference Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16–S21CrossRef Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16–S21CrossRef
6.
go back to reference Ritzel RA, Butler AE, Rizza RA et al (2006) Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718CrossRefPubMed Ritzel RA, Butler AE, Rizza RA et al (2006) Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718CrossRefPubMed
7.
go back to reference Yang L, Ji W, Xue Y, Chen L (2013) Imaging beta-cell mass and function in situ and in vivo. J Mol Med 91:929–938CrossRefPubMed Yang L, Ji W, Xue Y, Chen L (2013) Imaging beta-cell mass and function in situ and in vivo. J Mol Med 91:929–938CrossRefPubMed
8.
go back to reference Eriksson AU, Svensson C, Hornblad A et al (2013) Near infrared optical projection tomography for assessments of beta-cell mass distribution in diabetes research. J Vis Exp 71:e50238 Eriksson AU, Svensson C, Hornblad A et al (2013) Near infrared optical projection tomography for assessments of beta-cell mass distribution in diabetes research. J Vis Exp 71:e50238
9.
go back to reference Virostko J, Radhika A, Poffenberger G et al (2013) Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. PLoS ONE 8:e57784 Virostko J, Radhika A, Poffenberger G et al (2013) Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. PLoS ONE 8:e57784
10.
go back to reference Stasiuk GJ, Minuzzi F, Sae-Heng M et al (2015) Dual-modal magnetic resonance/fluorescent zinc probes for pancreatic beta-cell mass imaging. Chemistry 21:5023–5033CrossRefPubMedPubMedCentral Stasiuk GJ, Minuzzi F, Sae-Heng M et al (2015) Dual-modal magnetic resonance/fluorescent zinc probes for pancreatic beta-cell mass imaging. Chemistry 21:5023–5033CrossRefPubMedPubMedCentral
11.
go back to reference Vinet L, Lamprianou S, Babic A et al (2015) Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia 58:304–312CrossRef Vinet L, Lamprianou S, Babic A et al (2015) Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia 58:304–312CrossRef
12.
go back to reference Antkowiak PF, Stevens BK, Nunemaker CS et al (2013) Manganese-enhanced magnetic resonance imaging detects declining pancreatic beta-cell mass in a cyclophosphamide-accelerated mouse model of type 1 diabetes. Diabetes 62:44–48CrossRefPubMed Antkowiak PF, Stevens BK, Nunemaker CS et al (2013) Manganese-enhanced magnetic resonance imaging detects declining pancreatic beta-cell mass in a cyclophosphamide-accelerated mouse model of type 1 diabetes. Diabetes 62:44–48CrossRefPubMed
13.
go back to reference Pattou F, Kerr-Conte J, Wild D (2010) GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. New Engl J Med 363:1289–1290CrossRefPubMed Pattou F, Kerr-Conte J, Wild D (2010) GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. New Engl J Med 363:1289–1290CrossRefPubMed
14.
go back to reference Brom M, Woliner-van der Weg W, Joosten L et al (2014) Non-invasive quantification of the beta cell mass by SPECT with In-labelled exendin. Diabetologia 57(5):950–959 Brom M, Woliner-van der Weg W, Joosten L et al (2014) Non-invasive quantification of the beta cell mass by SPECT with In-labelled exendin. Diabetologia 57(5):950–959
15.
go back to reference Eriksson O, Espes D, Selvaraju RK et al (2014) Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 63:3428–3437CrossRefPubMed Eriksson O, Espes D, Selvaraju RK et al (2014) Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 63:3428–3437CrossRefPubMed
16.
go back to reference Aaen K, Rygaard J, Josefsen K et al (1990) Dependence of antigen expression on functional state of beta-cells. Diabetes 39:697–701CrossRefPubMed Aaen K, Rygaard J, Josefsen K et al (1990) Dependence of antigen expression on functional state of beta-cells. Diabetes 39:697–701CrossRefPubMed
17.
go back to reference Malaisse WJ, Damhaut P, Malaisse-Lagae F et al (2000) Fate of 2-deoxy-2-[18F]fluoro-D-glucose in control and diabetic rats. Int J Mol Med 5:525–532PubMed Malaisse WJ, Damhaut P, Malaisse-Lagae F et al (2000) Fate of 2-deoxy-2-[18F]fluoro-D-glucose in control and diabetic rats. Int J Mol Med 5:525–532PubMed
18.
go back to reference Eriksson O, Selvaraju RK, Johansson L et al (2014) Quantitative imaging of serotonergic biosynthesis and degradation in the endocrine pancreas. J Nucl Med 55:460–465CrossRefPubMed Eriksson O, Selvaraju RK, Johansson L et al (2014) Quantitative imaging of serotonergic biosynthesis and degradation in the endocrine pancreas. J Nucl Med 55:460–465CrossRefPubMed
20.
go back to reference Brom M, Joosten L, Frielink C et al (2015) (111)In-exendin uptake in the pancreas correlates with the beta-cell mass and not with the alpha-cell mass. Diabetes 64:1324–1328CrossRefPubMed Brom M, Joosten L, Frielink C et al (2015) (111)In-exendin uptake in the pancreas correlates with the beta-cell mass and not with the alpha-cell mass. Diabetes 64:1324–1328CrossRefPubMed
21.
go back to reference Kung MP, Hou C, Lieberman BP et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176CrossRefPubMed Kung MP, Hou C, Lieberman BP et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176CrossRefPubMed
22.
go back to reference Mathijs I, Xavier C, Peleman C et al (2015) A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT. Mol Imaging Biol 17:58–66CrossRefPubMed Mathijs I, Xavier C, Peleman C et al (2015) A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT. Mol Imaging Biol 17:58–66CrossRefPubMed
23.
go back to reference Mikkola K, Yim CB, Fagerholm V et al (2014) 64Cu- and 68Ga-labelled [Nle(14), Lys(40)(Ahx-NODAGA)NH2]-exendin-4 for pancreatic beta cell imaging in rats. Mol Imaging Biol 16:255–263CrossRefPubMed Mikkola K, Yim CB, Fagerholm V et al (2014) 64Cu- and 68Ga-labelled [Nle(14), Lys(40)(Ahx-NODAGA)NH2]-exendin-4 for pancreatic beta cell imaging in rats. Mol Imaging Biol 16:255–263CrossRefPubMed
24.
go back to reference Reiner T, Thurber G, Gaglia J et al (2011) Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A 108:12815–12820CrossRefPubMedPubMedCentral Reiner T, Thurber G, Gaglia J et al (2011) Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A 108:12815–12820CrossRefPubMedPubMedCentral
25.
go back to reference Villate O, Turatsinze JV, Mascali LG et al (2014) Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 42:11818–11830CrossRefPubMedPubMedCentral Villate O, Turatsinze JV, Mascali LG et al (2014) Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 42:11818–11830CrossRefPubMedPubMedCentral
26.
go back to reference Fukaya M, Tamura Y, Chiba Y et al (2013) Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced beta-cell damage and diabetes in mice. Biochem Biophys Res Commun 442:92–98CrossRefPubMedPubMedCentral Fukaya M, Tamura Y, Chiba Y et al (2013) Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced beta-cell damage and diabetes in mice. Biochem Biophys Res Commun 442:92–98CrossRefPubMedPubMedCentral
27.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed
28.
go back to reference Brom M, Joosten L, Oyen WJ, Gotthardt M, Boerman OC (2012) Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas. Contrast Media Mol Imaging 7:160–166CrossRefPubMedPubMedCentral Brom M, Joosten L, Oyen WJ, Gotthardt M, Boerman OC (2012) Radiolabelled GLP-1 analogues for in vivo targeting of insulinomas. Contrast Media Mol Imaging 7:160–166CrossRefPubMedPubMedCentral
29.
go back to reference Gotthardt M, Boermann OC, Behr TM, Behe MP, Oyen WJ (2004) Development and clinical application of peptide-based radiopharmaceuticals. Curr Pharmac Des 10:2951–2963CrossRef Gotthardt M, Boermann OC, Behr TM, Behe MP, Oyen WJ (2004) Development and clinical application of peptide-based radiopharmaceuticals. Curr Pharmac Des 10:2951–2963CrossRef
30.
go back to reference Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24:28–47CrossRefPubMed Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24:28–47CrossRefPubMed
31.
go back to reference Nalin L, Selvaraju RK, Velikyan I et al (2014) Positron emission tomography imaging of the glucagon-like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs. Eur J Nucl Med Mol Imaging 41:1800–1810CrossRefPubMed Nalin L, Selvaraju RK, Velikyan I et al (2014) Positron emission tomography imaging of the glucagon-like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs. Eur J Nucl Med Mol Imaging 41:1800–1810CrossRefPubMed
Metadata
Title
Strain Differences Determine the Suitability of Animal Models for Noninvasive In Vivo Beta Cell Mass Determination with Radiolabeled Exendin
Authors
Stefanie M. A. Willekens
Lieke Joosten
Otto C. Boerman
Alexander Balhuizen
Decio L. Eizirik
Martin Gotthardt
Maarten Brom
Publication date
01-10-2016
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 5/2016
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-016-0936-y

Other articles of this Issue 5/2016

Molecular Imaging and Biology 5/2016 Go to the issue