Skip to main content
Top
Published in: Urolithiasis 4/2017

01-08-2017 | Original Paper

Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal

Authors: Ann M. Kolbach-Mandel, Neil S. Mandel, Brian R. Hoffmann, Jack G. Kleinman, Jeffrey A. Wesson

Published in: Urolithiasis | Issue 4/2017

Login to get access

Abstract

Many urine proteins are found in calcium oxalate stones, yet decades of research have failed to define the role of urine proteins in stone formation. This urine proteomic study compares the relative amounts of abundant urine proteins between idiopathic calcium oxalate stone forming and non-stone forming (normal) cohorts to identify differences that might correlate with disease. Random mid-morning urine samples were collected following informed consent from 25 stone formers and 14 normal individuals. Proteins were isolated from urine using ultrafiltration. Urine proteomes for each sample were characterized using label-free spectral counting mass spectrometry, so that urine protein relative abundances could be compared between the two populations. A total of 407 unique proteins were identified with the 38 predominant proteins accounting for >82% of all sample spectral counts. The most highly abundant proteins were equivalent in stone formers and normals, though significant differences were observed in a few moderate abundance proteins (immunoglobulins, transferrin, and epidermal growth factor), accounting for 13 and 10% of the spectral counts, respectively. These proteins contributed to a cationic shift in protein distribution in stone formers compared to normals (22% vs. 18%, p = 0.04). Our data showing only small differences in moderate abundance proteins suggest that no single protein controls stone formation. Observed increases in immunoglobulins and transferrin suggest increased inflammatory activity in stone formers, but cannot distinguish cause from effect in stone formation. The observed cationic shift in protein distribution would diminish protein charge stabilization, which could lead to protein aggregation and increased risk for crystal aggregation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tamm I, Horsfall FL, Jr (1950) Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 74: 106–108 (Electronic version)CrossRefPubMed Tamm I, Horsfall FL, Jr (1950) Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 74: 106–108 (Electronic version)CrossRefPubMed
2.
go back to reference Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76: 213–227. (Electronic version)CrossRefPubMed Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: a review. J Urol 76: 213–227. (Electronic version)CrossRefPubMed
3.
go back to reference Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 2013: 292953 (Electronic version)CrossRefPubMedPubMedCentral Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 2013: 292953 (Electronic version)CrossRefPubMedPubMedCentral
4.
go back to reference Worcester EM (1994) Urinary calcium oxalate crystal growth inhibitors. J Am Soc Nephrol 5:S46–S53PubMed Worcester EM (1994) Urinary calcium oxalate crystal growth inhibitors. J Am Soc Nephrol 5:S46–S53PubMed
5.
go back to reference Min W, Shiraga H, Chalko C, Goldfarb S, Krishna G, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 52:189–193CrossRef Min W, Shiraga H, Chalko C, Goldfarb S, Krishna G, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 52:189–193CrossRef
6.
go back to reference Cerini C, Geider S, Dussol B, Hennequin C, Daudon M, Veesler S, Nitsche S, Boistelle R, Berthezene P, Dupuy P, Vazi A, Berland Y, Dagorn JC, Verdier JM (1999) Nucleation of calcium oxalate crystals by albumin: involvement in the prevention of stone formation. Kidney Int 55:1776–1786CrossRefPubMed Cerini C, Geider S, Dussol B, Hennequin C, Daudon M, Veesler S, Nitsche S, Boistelle R, Berthezene P, Dupuy P, Vazi A, Berland Y, Dagorn JC, Verdier JM (1999) Nucleation of calcium oxalate crystals by albumin: involvement in the prevention of stone formation. Kidney Int 55:1776–1786CrossRefPubMed
7.
go back to reference Hess B (1992) Tamm-horsfall glycoprotein–inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20:83–86CrossRefPubMed Hess B (1992) Tamm-horsfall glycoprotein–inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20:83–86CrossRefPubMed
8.
go back to reference Glauser A, Hochreiter W, Jaeger P, Hess B (2000) Determinants of urinary excretion of tamm-horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transpl 15:1580–1587CrossRef Glauser A, Hochreiter W, Jaeger P, Hess B (2000) Determinants of urinary excretion of tamm-horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transpl 15:1580–1587CrossRef
9.
go back to reference Atmani F, Khan SR (1999) Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol 10:S385–S388PubMed Atmani F, Khan SR (1999) Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol 10:S385–S388PubMed
10.
go back to reference Dawson CJ, Grover PK, Ryall RL (1998) Inter-alpha-inhibitor in urine and calcium oxalate urinary crystals. Br J Urol 81:20–26CrossRefPubMed Dawson CJ, Grover PK, Ryall RL (1998) Inter-alpha-inhibitor in urine and calcium oxalate urinary crystals. Br J Urol 81:20–26CrossRefPubMed
11.
go back to reference Dussol B, Geider S, Lilova A, Leonetti F, Dupuy P, Daudon M, Berland Y, Dagorn JC, Verdier JM (1995) Analysis of the soluble organic matrix of five morphologically different kidney stones. evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol Res 23:45–51CrossRefPubMed Dussol B, Geider S, Lilova A, Leonetti F, Dupuy P, Daudon M, Berland Y, Dagorn JC, Verdier JM (1995) Analysis of the soluble organic matrix of five morphologically different kidney stones. evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol Res 23:45–51CrossRefPubMed
12.
go back to reference Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated tamm-horsfall protein. Urol Res 39: 269–282. (Electronic version)CrossRefPubMedPubMedCentral Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated tamm-horsfall protein. Urol Res 39: 269–282. (Electronic version)CrossRefPubMedPubMedCentral
13.
go back to reference Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62CrossRefPubMed Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62CrossRefPubMed
14.
go back to reference Canales BK, Anderson L, Higgins L, Ensrud-Bowlin K, Roberts KP, Wu B, Kim IW, Monga M (2010) Proteome of human calcium kidney stones. Urology 76: 1017.e13–1017.e20. (Electronic version)CrossRef Canales BK, Anderson L, Higgins L, Ensrud-Bowlin K, Roberts KP, Wu B, Kim IW, Monga M (2010) Proteome of human calcium kidney stones. Urology 76: 1017.e13–1017.e20. (Electronic version)CrossRef
15.
go back to reference Kaneko K, Kobayashi R, Yasuda M, Izumi Y, Yamanobe T, Shimizu T (2012) Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography-tandem mass spectrometry. Int J Urol 19: 765–772. (Electronic version)CrossRefPubMed Kaneko K, Kobayashi R, Yasuda M, Izumi Y, Yamanobe T, Shimizu T (2012) Comparison of matrix proteins in different types of urinary stone by proteomic analysis using liquid chromatography-tandem mass spectrometry. Int J Urol 19: 765–772. (Electronic version)CrossRefPubMed
16.
go back to reference Okumura N, Tsujihata M, Momhara C, Yoshioka I, Suto K, Nonomura N, Okuyama A, Toshifumi T (2013) Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 8:2013-e68624; PMID: 23874695 [Electronic Resource]. Okumura N, Tsujihata M, Momhara C, Yoshioka I, Suto K, Nonomura N, Okuyama A, Toshifumi T (2013) Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 8:2013-e68624; PMID: 23874695 [Electronic Resource].
17.
go back to reference Witzmann FA, Evan AP, Coe FL, Worcester EM, Lingeman JE, Williams JCJ (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteom Sci 14:4. (Electronic version)CrossRef Witzmann FA, Evan AP, Coe FL, Worcester EM, Lingeman JE, Williams JCJ (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteom Sci 14:4. (Electronic version)CrossRef
18.
go back to reference Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K (2014) Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta 429: 81–89. (Electronic version)CrossRefPubMed Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K (2014) Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta 429: 81–89. (Electronic version)CrossRefPubMed
19.
go back to reference Merchant ML, Cummins TD, Wilkey DW, Salyer SA, Powell DW, Klein JB, Lederer ED (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 295: F1254–8. (Electronic version)CrossRefPubMedPubMedCentral Merchant ML, Cummins TD, Wilkey DW, Salyer SA, Powell DW, Klein JB, Lederer ED (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 295: F1254–8. (Electronic version)CrossRefPubMedPubMedCentral
20.
go back to reference Wesson JA, Ganne V, Beshensky AM, Kleinman JG (2005) Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res 33:206–212CrossRefPubMed Wesson JA, Ganne V, Beshensky AM, Kleinman JG (2005) Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res 33:206–212CrossRefPubMed
21.
go back to reference Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2016) The role of macromolecules in the formation of kidney stones. Urolithiasis 45:57–74. (Electronic version)CrossRefPubMed Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2016) The role of macromolecules in the formation of kidney stones. Urolithiasis 45:57–74. (Electronic version)CrossRefPubMed
22.
go back to reference Saw NK, Rao PN, Kavanagh JP (2008) A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 36:11–15CrossRefPubMed Saw NK, Rao PN, Kavanagh JP (2008) A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 36:11–15CrossRefPubMed
23.
go back to reference Kolbach-Mandel AM, Kleinman JG, Wesson JA (2015) Exploring calcium oxalate crystallization: a constant composition approach. Urolithiasis 43: 397–409CrossRefPubMedPubMedCentral Kolbach-Mandel AM, Kleinman JG, Wesson JA (2015) Exploring calcium oxalate crystallization: a constant composition approach. Urolithiasis 43: 397–409CrossRefPubMedPubMedCentral
24.
go back to reference Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84: 462–473. (Electronic version).CrossRefPubMedPubMedCentral Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84: 462–473. (Electronic version).CrossRefPubMedPubMedCentral
25.
go back to reference Gambaro G, Croppi E, Coe F, Lingeman J, Moe O, Worcester E, Buchholz N, Bushinsky D, Curhan GC, Ferraro PM, Fuster D, Goldfarb DS, Heilberg IP, Hess B, Lieske J, Marangella M, Milliner D, Preminger GM, Reis Santos JM, Sakhaee K, Sarica K, Siener R, Strazzullo P, Williams JC, Consensus Conference Group (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29: 715–734. (Electronic version).CrossRefPubMedPubMedCentral Gambaro G, Croppi E, Coe F, Lingeman J, Moe O, Worcester E, Buchholz N, Bushinsky D, Curhan GC, Ferraro PM, Fuster D, Goldfarb DS, Heilberg IP, Hess B, Lieske J, Marangella M, Milliner D, Preminger GM, Reis Santos JM, Sakhaee K, Sarica K, Siener R, Strazzullo P, Williams JC, Consensus Conference Group (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29: 715–734. (Electronic version).CrossRefPubMedPubMedCentral
26.
go back to reference Yu H, Wakim B, Li M, Halligan B, Tint GS, Patel SB (2007) Quantifying raft proteins in neonatal mouse brain by ‘tube-gel’ protein digestion label-free shotgun proteomics. Proteom Sci 5: 17. (Electronic version).CrossRef Yu H, Wakim B, Li M, Halligan B, Tint GS, Patel SB (2007) Quantifying raft proteins in neonatal mouse brain by ‘tube-gel’ protein digestion label-free shotgun proteomics. Proteom Sci 5: 17. (Electronic version).CrossRef
27.
go back to reference Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol JA, Schnitzer JE (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28: 83–89. (Electronic version).CrossRefPubMed Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol JA, Schnitzer JE (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28: 83–89. (Electronic version).CrossRefPubMed
29.
go back to reference Scurr DS, Latif AB, Sergeant V, Robertson WG (1983) Polyanionic inhibitors of calcium oxalate crystal agglomeration in urine. Proc Eur Dial Transpl Assoc 20: 440–444. Scurr DS, Latif AB, Sergeant V, Robertson WG (1983) Polyanionic inhibitors of calcium oxalate crystal agglomeration in urine. Proc Eur Dial Transpl Assoc 20: 440–444.
30.
go back to reference Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon CD, Domon B (2011) Toward a standardized urine proteome analysis methodology. Proteomics 11: 1160–1171. (Electronic version).CrossRefPubMed Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon CD, Domon B (2011) Toward a standardized urine proteome analysis methodology. Proteomics 11: 1160–1171. (Electronic version).CrossRefPubMed
31.
go back to reference Wright CA, Howles S, Trudgian DC, Kessler BM, Reynard JM, Noble JG, Hamdy FC, Turney BW (2011) Label-free quantitative proteomics reveals differentially regulated proteins influencing urolithiasis. Mol Cell Proteomics 10: M110.005686. (Electronic version).CrossRefPubMedPubMedCentral Wright CA, Howles S, Trudgian DC, Kessler BM, Reynard JM, Noble JG, Hamdy FC, Turney BW (2011) Label-free quantitative proteomics reveals differentially regulated proteins influencing urolithiasis. Mol Cell Proteomics 10: M110.005686. (Electronic version).CrossRefPubMedPubMedCentral
32.
go back to reference Nagaraj N, & Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteom Res 10: 637–645. (Electronic version).CrossRef Nagaraj N, & Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteom Res 10: 637–645. (Electronic version).CrossRef
33.
go back to reference Tan Y, Zhang JJ, Liu G, Zhang H, Zhao MH (2009) The level of urinary secretory immunoglobulin A (sIgA) of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Clin Exp Immunol 156: 111–116. (Electronic version).CrossRefPubMedPubMedCentral Tan Y, Zhang JJ, Liu G, Zhang H, Zhao MH (2009) The level of urinary secretory immunoglobulin A (sIgA) of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Clin Exp Immunol 156: 111–116. (Electronic version).CrossRefPubMedPubMedCentral
34.
go back to reference Gohda T, Walker WH, Wolkow P, Lee JE, Warram JH, Krolewski AS, Niewczas MA (2012) Elevated urinary excretion of immunoglobulins in nonproteinuric patients with type 1 diabetes. Am J Physiol Renal Physiol 303: F157–62. (Electronic version).CrossRefPubMedPubMedCentral Gohda T, Walker WH, Wolkow P, Lee JE, Warram JH, Krolewski AS, Niewczas MA (2012) Elevated urinary excretion of immunoglobulins in nonproteinuric patients with type 1 diabetes. Am J Physiol Renal Physiol 303: F157–62. (Electronic version).CrossRefPubMedPubMedCentral
35.
go back to reference Lisowska-Myjak B, Krych A, Kolodziejczyk A, Pachecka J, Gaciong Z (2011) Urinary proteins, N-acetyl-beta-d-glucosaminidase activity and estimated glomerular filtration rate in hypertensive patients with normoalbuminuria and microalbuminuria. Nephrology (Carlton) 16: 403–409. (Electronic version).CrossRef Lisowska-Myjak B, Krych A, Kolodziejczyk A, Pachecka J, Gaciong Z (2011) Urinary proteins, N-acetyl-beta-d-glucosaminidase activity and estimated glomerular filtration rate in hypertensive patients with normoalbuminuria and microalbuminuria. Nephrology (Carlton) 16: 403–409. (Electronic version).CrossRef
36.
go back to reference Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7:R80CrossRefPubMedPubMedCentral Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7:R80CrossRefPubMedPubMedCentral
37.
go back to reference Gu YM, Thijs L, Liu YP, Zhang Z, Jacobs L, Koeck T, Zurbig P, Lichtinghagen R, Brand K, Kuznetsova T, Olivi L, Verhamme P, Delles C, Mischak H, Staessen JA (2014) The urinary proteome as correlate and predictor of renal function in a population study. Nephrol Dial Transpl 29:2260–2268. (Electronic version)CrossRef Gu YM, Thijs L, Liu YP, Zhang Z, Jacobs L, Koeck T, Zurbig P, Lichtinghagen R, Brand K, Kuznetsova T, Olivi L, Verhamme P, Delles C, Mischak H, Staessen JA (2014) The urinary proteome as correlate and predictor of renal function in a population study. Nephrol Dial Transpl 29:2260–2268. (Electronic version)CrossRef
38.
go back to reference Bergsland KJ, Kelly JK, Coe BJ, Coe FL (2006) Urine protein markers distinguish stone-forming from non-stone-forming relatives of calcium stone formers. Am J Physiol Renal Physiol 291: F530–6. (Electronic version).CrossRefPubMed Bergsland KJ, Kelly JK, Coe BJ, Coe FL (2006) Urine protein markers distinguish stone-forming from non-stone-forming relatives of calcium stone formers. Am J Physiol Renal Physiol 291: F530–6. (Electronic version).CrossRefPubMed
39.
go back to reference Pillay SN, Asplin JR, Coe FL (1998) Evidence that calgranulin is produced by kidney cells and is an inhibitor of calcium oxalate crystallization. Am J Physiol 275: F255–61. (Electronic version).PubMed Pillay SN, Asplin JR, Coe FL (1998) Evidence that calgranulin is produced by kidney cells and is an inhibitor of calcium oxalate crystallization. Am J Physiol 275: F255–61. (Electronic version).PubMed
40.
go back to reference Levy FL, Adams-Huet B, Pak CY (1995) Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med 98:50–59CrossRefPubMed Levy FL, Adams-Huet B, Pak CY (1995) Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med 98:50–59CrossRefPubMed
41.
go back to reference Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195: 1143–51. (Electronic version).CrossRefPubMed Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195: 1143–51. (Electronic version).CrossRefPubMed
42.
43.
go back to reference Ohara N, Hanyu O, Hirayama S, Nakagawa O, Aizawa Y, Ito S, Sone H (2014) Hypertension increases urinary excretion of immunoglobulin G, ceruloplasmin and transferrin in normoalbuminuric patients with type 2 diabetes mellitus. J Hypertens 32: 432–438. (Electronic version).CrossRefPubMed Ohara N, Hanyu O, Hirayama S, Nakagawa O, Aizawa Y, Ito S, Sone H (2014) Hypertension increases urinary excretion of immunoglobulin G, ceruloplasmin and transferrin in normoalbuminuric patients with type 2 diabetes mellitus. J Hypertens 32: 432–438. (Electronic version).CrossRefPubMed
44.
go back to reference Kreunin P, Zhao J, Rosser C, Urquidi V, Lubman DM, Goodison S (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6: 2631–2639. (Electronic version).CrossRefPubMedPubMedCentral Kreunin P, Zhao J, Rosser C, Urquidi V, Lubman DM, Goodison S (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6: 2631–2639. (Electronic version).CrossRefPubMedPubMedCentral
45.
go back to reference Kentsis A, Ahmed S, Kurek K, Brennan E, Bradwin G, Steen H, Bachur R (2012) Detection and diagnostic value of urine leucine-rich alpha-2-glycoprotein in children with suspected acute appendicitis. Ann Emerg Med 60: 78–83.e1. (Electronic version).CrossRefPubMedPubMedCentral Kentsis A, Ahmed S, Kurek K, Brennan E, Bradwin G, Steen H, Bachur R (2012) Detection and diagnostic value of urine leucine-rich alpha-2-glycoprotein in children with suspected acute appendicitis. Ann Emerg Med 60: 78–83.e1. (Electronic version).CrossRefPubMedPubMedCentral
46.
go back to reference Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, Drew R (2001) Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 47: 673–680. (Electronic version).PubMed Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, Drew R (2001) Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 47: 673–680. (Electronic version).PubMed
47.
go back to reference Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed
48.
go back to reference Kolbach-Mandel AM, Mandel NS, Cohen SR, Kleinman JG, Ahmed F, Mandel IC, Wesson JA (2017) Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation. Urolithiasis 45:139–149. (Electronic version)CrossRefPubMed Kolbach-Mandel AM, Mandel NS, Cohen SR, Kleinman JG, Ahmed F, Mandel IC, Wesson JA (2017) Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation. Urolithiasis 45:139–149. (Electronic version)CrossRefPubMed
49.
go back to reference Halligan BD, Geiger JF, Vallejos AK, Greene AS, Twigger SN (2009) Low cost, scalable proteomics data analysis using amazon’s cloud computing services and open source search algorithms. J Proteome Res 8: 3148–3153. (Electronic version)CrossRefPubMedPubMedCentral Halligan BD, Geiger JF, Vallejos AK, Greene AS, Twigger SN (2009) Low cost, scalable proteomics data analysis using amazon’s cloud computing services and open source search algorithms. J Proteome Res 8: 3148–3153. (Electronic version)CrossRefPubMedPubMedCentral
50.
go back to reference Halligan BD, Greene AS (2011) Visualize: a free and open source multifunction tool for proteomics data analysis. Proteomics 11: 1058–1063. (Electronic version).CrossRefPubMed Halligan BD, Greene AS (2011) Visualize: a free and open source multifunction tool for proteomics data analysis. Proteomics 11: 1058–1063. (Electronic version).CrossRefPubMed
Metadata
Title
Stone former urine proteome demonstrates a cationic shift in protein distribution compared to normal
Authors
Ann M. Kolbach-Mandel
Neil S. Mandel
Brian R. Hoffmann
Jack G. Kleinman
Jeffrey A. Wesson
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 4/2017
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-017-0969-y

Other articles of this Issue 4/2017

Urolithiasis 4/2017 Go to the issue