Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2012

Open Access 01-12-2012 | Technical advance

Statistical adjustment of genotyping error in a case–control study of childhood leukaemia

Authors: Matthew N Cooper, Nicholas H de Klerk, Kathryn R Greenop, Sarra E Jamieson, Denise Anderson, Frank M van Bockxmeer, Bruce K Armstrong, Elizabeth Milne

Published in: BMC Medical Research Methodology | Issue 1/2012

Login to get access

Abstract

Background

Genotyping has become more cost-effective and less invasive with the use of buccal cell sampling. However, low or fragmented DNA yields from buccal cells collected using FTA cards often requires additional whole genome amplification to produce sufficient DNA for genotyping. In our case–control study of childhood leukaemia, discordance was found between genotypes derived from blood and whole genome amplified FTA buccal DNA samples. We aimed to develop a user-friendly method to correct for this genotype misclassification, as existing methods were not suitable for use in our study.

Methods

Discordance between the results of blood and buccal-derived DNA was assessed in childhood leukaemia cases who had both blood and FTA buccal samples. A method based on applying misclassification probabilities to measured data and combining results using multiple imputations, was devised to correct for error in the genotypes of control subjects, for whom only buccal samples were available, to minimize bias in the odds ratios in the case–control analysis.

Results

Application of the correction method to synthetic datasets showed it was effective in producing correct odds ratios from data with known misclassification. Moreover, when applied to each of six bi-allelic loci, correction altered the odds ratios in the logically anticipated manner given the degree and direction of the misclassification revealed by the investigations in cases. The precision of the effect estimates decreased with decreasing size of the misclassification data set.

Conclusions

Bias arising from differential genotype misclassification can be reduced by correcting results using this method whenever data on concordance of genotyping results with those from a different and probably better DNA source are available.
Appendix
Available only for authorised users
Literature
1.
go back to reference Milne E, Royle JA, de Klerk NH, Blair E, Bailey H, Cole C, Attia J, Scott RJ, Armstrong BK: Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case–control study. Am J Epidemiol. 2009, 170 (2): 221-228. 10.1093/aje/kwp117.CrossRefPubMed Milne E, Royle JA, de Klerk NH, Blair E, Bailey H, Cole C, Attia J, Scott RJ, Armstrong BK: Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case–control study. Am J Epidemiol. 2009, 170 (2): 221-228. 10.1093/aje/kwp117.CrossRefPubMed
2.
go back to reference Milne E, van Bockxmeer FM, Robertson L, Brisbane JM, Ashton LJ, Scott RJ, Armstrong BK: Buccal DNA collection: comparison of buccal swabs with FTA cards. Cancer Epi Bio Prev. 2006, 15 (4): 816-819. 10.1158/1055-9965.EPI-05-0753.CrossRef Milne E, van Bockxmeer FM, Robertson L, Brisbane JM, Ashton LJ, Scott RJ, Armstrong BK: Buccal DNA collection: comparison of buccal swabs with FTA cards. Cancer Epi Bio Prev. 2006, 15 (4): 816-819. 10.1158/1055-9965.EPI-05-0753.CrossRef
3.
go back to reference Morton LM, Cahill J, Hartge P: Reporting participation in epidemiologic studies: a survey of practice. Am J Epidemiol. 2006, 163 (3): 197-203.CrossRefPubMed Morton LM, Cahill J, Hartge P: Reporting participation in epidemiologic studies: a survey of practice. Am J Epidemiol. 2006, 163 (3): 197-203.CrossRefPubMed
4.
go back to reference Guolo A: Robust techniques for measurement error correction: a review. Stat Methods Med Res. 2008, 17 (6): 555-580. 10.1177/0962280207081318.CrossRefPubMed Guolo A: Robust techniques for measurement error correction: a review. Stat Methods Med Res. 2008, 17 (6): 555-580. 10.1177/0962280207081318.CrossRefPubMed
5.
go back to reference Thurigen D, Spiegelman D, Blettner M, Heuer C, Brenner H: Measurement error correction using validation data: a review of methods and their applicability in case–control studies. Stat Methods Med Res. 2000, 9 (5): 447-474. 10.1191/096228000701555253.CrossRefPubMed Thurigen D, Spiegelman D, Blettner M, Heuer C, Brenner H: Measurement error correction using validation data: a review of methods and their applicability in case–control studies. Stat Methods Med Res. 2000, 9 (5): 447-474. 10.1191/096228000701555253.CrossRefPubMed
6.
go back to reference Fox MP, Lash TL, Greenland S: A method to automate probabilistic sensitivity analyses of misclassified binary variables. Int J Epidemiol. 2005, 34 (6): 1370-1376. 10.1093/ije/dyi184.CrossRefPubMed Fox MP, Lash TL, Greenland S: A method to automate probabilistic sensitivity analyses of misclassified binary variables. Int J Epidemiol. 2005, 34 (6): 1370-1376. 10.1093/ije/dyi184.CrossRefPubMed
7.
go back to reference Cole SR, Chu H, Greenland S: Multiple-imputation for measurement-error correction. Int J Epidemiol. 2006, 35 (4): 1074-1081. 10.1093/ije/dyl097.CrossRefPubMed Cole SR, Chu H, Greenland S: Multiple-imputation for measurement-error correction. Int J Epidemiol. 2006, 35 (4): 1074-1081. 10.1093/ije/dyl097.CrossRefPubMed
8.
go back to reference Kuchenhoff H, Mwalili SM, Lesaffre E: A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics. 2006, 62 (1): 85-96. 10.1111/j.1541-0420.2005.00396.x.CrossRefPubMed Kuchenhoff H, Mwalili SM, Lesaffre E: A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics. 2006, 62 (1): 85-96. 10.1111/j.1541-0420.2005.00396.x.CrossRefPubMed
9.
go back to reference Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington NR, Stevens HE, et al: Population structure, differential bias and genomic control in a large-scale, case–control association study. Nat Genet. 2005, 37 (11): 1243-1246. 10.1038/ng1653.CrossRefPubMed Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington NR, Stevens HE, et al: Population structure, differential bias and genomic control in a large-scale, case–control association study. Nat Genet. 2005, 37 (11): 1243-1246. 10.1038/ng1653.CrossRefPubMed
10.
12.
go back to reference Croft DT, Jordan RM, Patney HL, Shriver CD, Vernalis MN, Orchard TJ, Ellsworth DL: Performance of whole-genome amplified DNA isolated from serum and plasma on high-density single nucleotide polymorphism arrays. J Mol Diagn. 2008, 10 (3): 249-257. 10.2353/jmoldx.2008.070155.CrossRefPubMedPubMedCentral Croft DT, Jordan RM, Patney HL, Shriver CD, Vernalis MN, Orchard TJ, Ellsworth DL: Performance of whole-genome amplified DNA isolated from serum and plasma on high-density single nucleotide polymorphism arrays. J Mol Diagn. 2008, 10 (3): 249-257. 10.2353/jmoldx.2008.070155.CrossRefPubMedPubMedCentral
Metadata
Title
Statistical adjustment of genotyping error in a case–control study of childhood leukaemia
Authors
Matthew N Cooper
Nicholas H de Klerk
Kathryn R Greenop
Sarra E Jamieson
Denise Anderson
Frank M van Bockxmeer
Bruce K Armstrong
Elizabeth Milne
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2012
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-12-141

Other articles of this Issue 1/2012

BMC Medical Research Methodology 1/2012 Go to the issue