Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 3/2012

01-06-2012

States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space

Authors: Gerardo Tusman, Fernando Suarez-Sipmann, Gabriel Paez, Jorge Alvarez, Stephan H. Bohm

Published in: Journal of Clinical Monitoring and Computing | Issue 3/2012

Login to get access

Abstract

We tested whether the ratio of alveolar dead space to alveolar tidal volume (VDalv/VTalv) can detect states of low pulmonary blood flow (PBF) in a non-invasive way. Fifteen patients undergoing cardiovascular surgeries with cardiopulmonary bypass (CPB) were studied. CPB is a technique that excludes the lungs from the general circulation. The weaning of CPB is a model that manipulates PBF in vivo because each time blood flow through the CPB decreases, expected PBF (ePBF) increases. Patients were liberated from CPB in steps of 20 % every 2′ starting from 100 % CPB (very low ePBF) to 0 % CPB (100 % ePBF). During constant ventilation, volumetric capnograms were recorded and Bohr’s dead space ratio (VDBohr/VT), VDalv/VTalv and the ratio of airway dead space to tidal volume (VDaw/VT) were calculated. Before CPB, VDBohr/VT was 0.36 ± 0.05, VDaw/VT 0.21 ± 0.04 and VDalv/VTalv 0.18 ± 0.06 (mean ± SD). During weaning from CPB, VDaw/VT remained unchanged while VDBohr/VT and VDalv/VTalv decreased with increasing ePBF. At CPB of 80, 60, 40 and 20 % VDBohr/VT was 0.64 ± 0.06, 0.55 ± 0.06, 0.47 ± 0.05 and 0.40 ± 0.04, respectively; p < 0.001 and VDalv/VTalv 0.53 ± 0.07, 0.40 ± 0.07, 0.29 ± 0.06 and 0.25 ± 0.04, respectively; p < 0.001). After CPB, VDBohr/VT and VDalv/VTalv reached values similar to baseline (0.37 ± 0.04 and 0.19 ± 0.06, respectively). At constant ventilation the alveolar component of VDBohr/VT increased in proportion to the deficit in lung perfusion.
Literature
1.
go back to reference Severinhaus JW, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48. Severinhaus JW, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48.
2.
go back to reference Anderson JT, Owings JT, Goodnight JE. Bedside non-invasive detection of acute pulmonary embolism in critically ill patients. Arch Surg. 1999;134:869–74.PubMedCrossRef Anderson JT, Owings JT, Goodnight JE. Bedside non-invasive detection of acute pulmonary embolism in critically ill patients. Arch Surg. 1999;134:869–74.PubMedCrossRef
3.
go back to reference Kline JA, Israel EG, Michelson EA, O’Neil BJ, Plewa MC, Portelli DC. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285:761–8.PubMedCrossRef Kline JA, Israel EG, Michelson EA, O’Neil BJ, Plewa MC, Portelli DC. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285:761–8.PubMedCrossRef
4.
go back to reference Verschuren F, Heinonen E, Clause D, Roeseler J, Thys F, Meert P, Marion E, El Gariani A, Col J, Reynaert M, Liistro G. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30:2129–30.PubMedCrossRef Verschuren F, Heinonen E, Clause D, Roeseler J, Thys F, Meert P, Marion E, El Gariani A, Col J, Reynaert M, Liistro G. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30:2129–30.PubMedCrossRef
5.
go back to reference Bohr C. Über die Lungeatmung. Skand Arch Physiol. 1981;2:236–8. Bohr C. Über die Lungeatmung. Skand Arch Physiol. 1981;2:236–8.
6.
go back to reference Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Läkareforen Forhandl. 1938;44:191–218. Enghoff H. Volumen inefficax. Bemerkungen zur Frage des schädlichen Raumes. Uppsala Läkareforen Forhandl. 1938;44:191–218.
7.
go back to reference Fletcher R, Jonson B. The concept of dead space with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.PubMedCrossRef Fletcher R, Jonson B. The concept of dead space with special reference to the single breath test for carbon dioxide. Br J Anaesth. 1981;53:77–88.PubMedCrossRef
9.
go back to reference Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.PubMedCrossRef Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.PubMedCrossRef
10.
go back to reference Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.PubMedCrossRef Tusman G, Suarez Sipmann F, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.PubMedCrossRef
11.
go back to reference Dubois AB, Britt AG, Fenn WO. Alveolar CO2 during the respiratory cycle. J Appl Physiol. 1951;4:535–48. Dubois AB, Britt AG, Fenn WO. Alveolar CO2 during the respiratory cycle. J Appl Physiol. 1951;4:535–48.
12.
go back to reference Krogh A, Lindhard J. On the average composition of the alveolar air and its variations during the respiratory cycle. J Physiol. 1913;47:431–45. Krogh A, Lindhard J. On the average composition of the alveolar air and its variations during the respiratory cycle. J Physiol. 1913;47:431–45.
13.
go back to reference Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.PubMedCrossRef Tusman G, Areta M, Climente C, Plit R, Suarez-Sipmann F, Rodríguez-Nieto MJ. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.PubMedCrossRef
14.
go back to reference The Criteria Committee of the New York Heart Association. Nomenclature and criteria for the diagnosis of diseases of the heart and great vessels. 9th ed. Boston, Mass: Little, Brown & Co; 1994, p. 253–256. The Criteria Committee of the New York Heart Association. Nomenclature and criteria for the diagnosis of diseases of the heart and great vessels. 9th ed. Boston, Mass: Little, Brown & Co; 1994, p. 253–256.
15.
go back to reference Tusman G, Scandurra A, Böhm SH, Suarez Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23:197–206.PubMedCrossRef Tusman G, Scandurra A, Böhm SH, Suarez Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23:197–206.PubMedCrossRef
16.
go back to reference Fowler WS. Lung function studies. II. The respiratory dead space. Am J Physiol. 1948;154:405–16.PubMed Fowler WS. Lung function studies. II. The respiratory dead space. Am J Physiol. 1948;154:405–16.PubMed
17.
go back to reference Paiva M. Computation of the boundary conditions for diffusion in the human lung. Comput Biomed Res. 1972;5:585–95.PubMedCrossRef Paiva M. Computation of the boundary conditions for diffusion in the human lung. Comput Biomed Res. 1972;5:585–95.PubMedCrossRef
18.
go back to reference Horsfield K, Cumming G. Functional consequences of airway morphology. J Appl Physiol. 1968;24:384–90.PubMed Horsfield K, Cumming G. Functional consequences of airway morphology. J Appl Physiol. 1968;24:384–90.PubMed
19.
go back to reference Troitzsch D: Measurement techniques and hemodynamic control, extracorporeal circulation in theory and practice. 1st ed. In: Tschaut RJ. Pabst Science Publisher; 1992, pp. 513–522. Troitzsch D: Measurement techniques and hemodynamic control, extracorporeal circulation in theory and practice. 1st ed. In: Tschaut RJ. Pabst Science Publisher; 1992, pp. 513–522.
20.
go back to reference Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med. 1985;13:907–9.PubMedCrossRef Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med. 1985;13:907–9.PubMedCrossRef
21.
go back to reference Gudipati CV, Weil MH, Bisera J, Deshmukh HG, Rackow EC. Expired carbon dioxide: a non-invasive monitor of cardiopulmonary resuscitation. Circulation. 1988;77:234–9.PubMedCrossRef Gudipati CV, Weil MH, Bisera J, Deshmukh HG, Rackow EC. Expired carbon dioxide: a non-invasive monitor of cardiopulmonary resuscitation. Circulation. 1988;77:234–9.PubMedCrossRef
22.
go back to reference Trevino RP, Bisera J, Weil MH, Rackow EC, Grundler WG. End-tidal CO2 as a guide to successful cardiopulmonary resuscitation: a preliminary report. Crit Care Med. 1985;13:910–1.PubMedCrossRef Trevino RP, Bisera J, Weil MH, Rackow EC, Grundler WG. End-tidal CO2 as a guide to successful cardiopulmonary resuscitation: a preliminary report. Crit Care Med. 1985;13:910–1.PubMedCrossRef
23.
go back to reference Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: a prognostic indicator for survival. JAMA. 1989;262:1347–51.PubMedCrossRef Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: a prognostic indicator for survival. JAMA. 1989;262:1347–51.PubMedCrossRef
24.
go back to reference Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis. 1986;133:679–85.PubMed Burki NK. The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis. 1986;133:679–85.PubMed
25.
go back to reference Kline JA, Kubin AK, Patel MM, Easton EJ, Seupal RA. Alveolar dead space as a predictor of severity of pulmonary embolism. Acad Emerg Med. 2000;7:611–7.PubMedCrossRef Kline JA, Kubin AK, Patel MM, Easton EJ, Seupal RA. Alveolar dead space as a predictor of severity of pulmonary embolism. Acad Emerg Med. 2000;7:611–7.PubMedCrossRef
Metadata
Title
States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space
Authors
Gerardo Tusman
Fernando Suarez-Sipmann
Gabriel Paez
Jorge Alvarez
Stephan H. Bohm
Publication date
01-06-2012
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 3/2012
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-012-9358-9

Other articles of this Issue 3/2012

Journal of Clinical Monitoring and Computing 3/2012 Go to the issue