Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds

Authors: Yongchun Zhou, Can Chen, Zhu Guo, Shanshan Xie, Jianzhong Hu, Hongbin Lu

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

To evaluate synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) as a tool for quantitative mapping of the content and distribution of the extracellular matrix in decellularized fibrocartilage bioscaffolds, and to provide a new platform for quantitatively characterizing bioscaffolds for tissue engineering.

Methods

Fibrocartilage was harvested and cut into book-shape bioscaffolds (N = 54), which were then decellularized. The structures and distribution of collagen fibrous and intrinsic ultrastructure in decellularized fibrocartilage bioscaffolds were evaluated by histological staining and scanning electron microscopy (SEM), respectively. The content of collagen and proteoglycan in the cellularized or decellularized bioscaffolds were also measured by SR-FTIR and biochemical assay.

Results

Book-shape fibrocartilage decellularized bioscaffolds were successfully obtained. Histological examination revealed that the structure of extracellular matrix endured during decellularization. Histology and DNA quantification analysis confirmed substantial removal of cells during decellularization. SEM demonstrated that intrinsic ultrastructure of the fibrocartilage bioscaffold was also well preserved. SR-FTIR quantitative analysis confirmed that decellularization had a significant effect on the content and distribution of collagen and proteoglycan in fibrocartilage bioscaffolds, these results are confirmed with the biochemical assay results.

Conclusion

SR-FTIR imaging can capture the histological morphology of decellularized bioscaffolds. Moreover, it can be used for quantitative mapping of the content and distribution of collagen in the bioscaffolds.
Literature
1.
go back to reference Mather RC 3rd, Koenig L, Acevedo D, Dall TM, Gallo P, Romeo A, Tongue J, Williams G Jr. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95:1993–2000.CrossRefPubMedPubMedCentral Mather RC 3rd, Koenig L, Acevedo D, Dall TM, Gallo P, Romeo A, Tongue J, Williams G Jr. The societal and economic value of rotator cuff repair. J Bone Joint Surg Am. 2013;95:1993–2000.CrossRefPubMedPubMedCentral
2.
go back to reference Lu H, Liu F, Chen H, Chen C, Qu J, Xu D, Zhang T, Zhou J, Hu J. The effect of low-intensity pulsed ultrasound on bone-tendon junction healing: initiating after inflammation stage. J Orthop Res. 2016;34:1697–706.CrossRefPubMedPubMedCentral Lu H, Liu F, Chen H, Chen C, Qu J, Xu D, Zhang T, Zhou J, Hu J. The effect of low-intensity pulsed ultrasound on bone-tendon junction healing: initiating after inflammation stage. J Orthop Res. 2016;34:1697–706.CrossRefPubMedPubMedCentral
3.
go back to reference Benjamin M, McGonagle D. Entheses. Tendon and ligament attachment sites. Scand J Med Sci Sports. 2006;19:520–7.CrossRef Benjamin M, McGonagle D. Entheses. Tendon and ligament attachment sites. Scand J Med Sci Sports. 2006;19:520–7.CrossRef
4.
go back to reference Hu J, Qu J, Xu D, Zhang T, Qin L, Lu H. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res. 2014;32:204–9.CrossRefPubMed Hu J, Qu J, Xu D, Zhang T, Qin L, Lu H. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res. 2014;32:204–9.CrossRefPubMed
5.
go back to reference Xu D, Zhang T, Qu J, Hu J, Lu H. Enhanced patella-patellar tendon healing using combined magnetic fields in a rabbit model. Am J Sports Med. 2014;42:2495–501.CrossRefPubMed Xu D, Zhang T, Qu J, Hu J, Lu H. Enhanced patella-patellar tendon healing using combined magnetic fields in a rabbit model. Am J Sports Med. 2014;42:2495–501.CrossRefPubMed
6.
go back to reference Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elb Surg. 2016;25:2078–85.CrossRef Deprés-Tremblay G, Chevrier A, Snow M, Hurtig MB, Rodeo S, Buschmann MD. Rotator cuff repair: a review of surgical techniques, animal models, and new technologies under development. J Shoulder Elb Surg. 2016;25:2078–85.CrossRef
7.
go back to reference Lu H, Chen C, Qu J, Chen H, Chen Y, Zheng C, Wang Z, Xu D, Zhou J, Zhang T, Qin L, Hu J. Initiation timing of low-intensity pulsed ultrasound stimulation for tendon-bone healing in a rabbit model. Am J Sports Med. 2016;44:2706–15.CrossRefPubMed Lu H, Chen C, Qu J, Chen H, Chen Y, Zheng C, Wang Z, Xu D, Zhou J, Zhang T, Qin L, Hu J. Initiation timing of low-intensity pulsed ultrasound stimulation for tendon-bone healing in a rabbit model. Am J Sports Med. 2016;44:2706–15.CrossRefPubMed
8.
go back to reference Wang L, Johnson JA, Zhang Q, Beahm EK. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater. 2013;9:892–8931. Wang L, Johnson JA, Zhang Q, Beahm EK. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater. 2013;9:892–8931.
9.
go back to reference Han TT, Toutounji S, Amsden BG, Flynn LE. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissuebioscaffolds. Biomaterials. 2015;72:125–37.CrossRefPubMed Han TT, Toutounji S, Amsden BG, Flynn LE. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissuebioscaffolds. Biomaterials. 2015;72:125–37.CrossRefPubMed
10.
go back to reference Guo L, Qu J, Zheng C, Cao Y, Zhang T, Lu H, Hu J. Preparation and characterization of a novel Decellularized fibrocartilage “book” scaffold for use in tissue engineering. PLoS One. 2015;10:e0144240.CrossRefPubMedPubMedCentral Guo L, Qu J, Zheng C, Cao Y, Zhang T, Lu H, Hu J. Preparation and characterization of a novel Decellularized fibrocartilage “book” scaffold for use in tissue engineering. PLoS One. 2015;10:e0144240.CrossRefPubMedPubMedCentral
11.
go back to reference Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone Interface as a function of tissue region and age. J Bone Miner Res. 2014;29:2643–52.CrossRefPubMedPubMedCentral Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone Interface as a function of tissue region and age. J Bone Miner Res. 2014;29:2643–52.CrossRefPubMedPubMedCentral
12.
go back to reference Spalazzi JP, Boskey AL, Pleshko N, Lu HH. Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One. 2013;8:e74349.CrossRefPubMedPubMedCentral Spalazzi JP, Boskey AL, Pleshko N, Lu HH. Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One. 2013;8:e74349.CrossRefPubMedPubMedCentral
13.
go back to reference Kim M, Bi X, Horton WE, Spencer RG, Camacho NP. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations. J Biomed Opt. 2005;10:031105.CrossRefPubMed Kim M, Bi X, Horton WE, Spencer RG, Camacho NP. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations. J Biomed Opt. 2005;10:031105.CrossRefPubMed
14.
go back to reference Kastyak-Ibrahim MZ, Nasse MJ, Rak M, Hirschmugl C, Del Bigio MR, Albensi BC, Gough KM. Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal plane array detec-tor. NeuroImage. 2012;60:376–83.CrossRefPubMed Kastyak-Ibrahim MZ, Nasse MJ, Rak M, Hirschmugl C, Del Bigio MR, Albensi BC, Gough KM. Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal plane array detec-tor. NeuroImage. 2012;60:376–83.CrossRefPubMed
15.
go back to reference Clède S, Lambert F, Sandt C, Gueroui Z, Delsuc N, Dumas P, Vessières A, Policar C. Synchrotron radiation FTIR detection of a metal-carbonyl tamoxifen analog. Correlation with luminescence microscopy to study its subcellular distribution. Biotechnol Adv. 2013;31:393–5.CrossRefPubMed Clède S, Lambert F, Sandt C, Gueroui Z, Delsuc N, Dumas P, Vessières A, Policar C. Synchrotron radiation FTIR detection of a metal-carbonyl tamoxifen analog. Correlation with luminescence microscopy to study its subcellular distribution. Biotechnol Adv. 2013;31:393–5.CrossRefPubMed
16.
go back to reference Pascolo L, Bortot B, Benseny-Cases N, Gianoncelli A, Tosi G, Ruozi B, Rizzardi C, De Martino E, Vandelli MA, Severini GM. Detectionof PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy. Int J Nanomedicine. 2014;9:2791–801.PubMedPubMedCentral Pascolo L, Bortot B, Benseny-Cases N, Gianoncelli A, Tosi G, Ruozi B, Rizzardi C, De Martino E, Vandelli MA, Severini GM. Detectionof PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy. Int J Nanomedicine. 2014;9:2791–801.PubMedPubMedCentral
17.
go back to reference Marmorato P, Ceccone G, Gianoncelli A, Pascolo L, Ponti J, Rossi F, Salomé M, Kaulich B, Kiskinova M. Cellular distribution and degradation of cobalt ferrite nanopar-ticles inBalb/3T3 mouse fibroblasts. Toxicol Lett. 2011;207:128–36.CrossRefPubMed Marmorato P, Ceccone G, Gianoncelli A, Pascolo L, Ponti J, Rossi F, Salomé M, Kaulich B, Kiskinova M. Cellular distribution and degradation of cobalt ferrite nanopar-ticles inBalb/3T3 mouse fibroblasts. Toxicol Lett. 2011;207:128–36.CrossRefPubMed
18.
go back to reference Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater. 2015;4:29–39.CrossRefPubMed Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater. 2015;4:29–39.CrossRefPubMed
19.
go back to reference Zhang ZY, Chen M, Tong YJ, Ji T, Zhu HC, Peng WW, Zhang M, Li YJ, Xiao TJ. Performance of the infrared microspectroscopy station at SSRF. Infrared PhysTechnol. 2014;67:521–5.CrossRef Zhang ZY, Chen M, Tong YJ, Ji T, Zhu HC, Peng WW, Zhang M, Li YJ, Xiao TJ. Performance of the infrared microspectroscopy station at SSRF. Infrared PhysTechnol. 2014;67:521–5.CrossRef
20.
go back to reference Wang M, Lu X, Yin X, Tong Y, Peng W, Wu L, Li H, Yang Y, Gu J, Xiaod T, Chen M, Zhang J. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm Sin B. 2015;5:270–6.CrossRefPubMedPubMedCentral Wang M, Lu X, Yin X, Tong Y, Peng W, Wu L, Li H, Yang Y, Gu J, Xiaod T, Chen M, Zhang J. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm Sin B. 2015;5:270–6.CrossRefPubMedPubMedCentral
21.
go back to reference Marcelli A, Cricenti A, Kwiatek WM, Petibois C. Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol Adv. 2012;30:1390–404.CrossRefPubMed Marcelli A, Cricenti A, Kwiatek WM, Petibois C. Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol Adv. 2012;30:1390–404.CrossRefPubMed
22.
go back to reference Zhu HY, Pei X, Wu LY, Qi ZM, Wang YY, Liu B, Zhou HG. Synchrotron radiation-based FTIR microspectroscopy study of 6-hydroxydopamine induced Parkinson’s disease cell model. Guang Pu Xue Yu Guang Pu Fen Xi. 2013;33:686–9.PubMed Zhu HY, Pei X, Wu LY, Qi ZM, Wang YY, Liu B, Zhou HG. Synchrotron radiation-based FTIR microspectroscopy study of 6-hydroxydopamine induced Parkinson’s disease cell model. Guang Pu Xue Yu Guang Pu Fen Xi. 2013;33:686–9.PubMed
Metadata
Title
SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds
Authors
Yongchun Zhou
Can Chen
Zhu Guo
Shanshan Xie
Jianzhong Hu
Hongbin Lu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2149-9

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue