Skip to main content
Top

18-04-2024 | Spondylolisthesis

The Classification of Lumbar Spondylolisthesis X-Ray Images Using Convolutional Neural Networks

Authors: Wutong Chen, Du Junsheng, Yanzhen Chen, Yifeng Fan, Hengzhi Liu, Chang Tan, Xuanming Shao, Xinzhi Li

Published in: Journal of Imaging Informatics in Medicine

Login to get access

Abstract

We aimed to develop and validate a deep convolutional neural network (DCNN) model capable of accurately identifying spondylolysis or spondylolisthesis on lateral or dynamic X-ray images. A total of 2449 lumbar lateral and dynamic X-ray images were collected from two tertiary hospitals. These images were categorized into lumbar spondylolysis (LS), degenerative lumbar spondylolisthesis (DLS), and normal lumbar in a proportional manner. Subsequently, the images were randomly divided into training, validation, and test sets to establish a classification recognition network. The model training and validation process utilized the EfficientNetV2-M network. The model’s ability to generalize was assessed by conducting a rigorous evaluation on an entirely independent test set and comparing its performance with the diagnoses made by three orthopedists and three radiologists. The evaluation metrics employed to assess the model’s performance included accuracy, sensitivity, specificity, and F1 score. Additionally, the weight distribution of the network was visualized using gradient-weighted class activation mapping (Grad-CAM). For the doctor group, accuracy ranged from 87.9 to 90.0% (mean, 89.0%), precision ranged from 87.2 to 90.5% (mean, 89.0%), sensitivity ranged from 87.1 to 91.0% (mean, 89.2%), specificity ranged from 93.7 to 94.7% (mean, 94.3%), and F1 score ranged from 88.2 to 89.9% (mean, 89.1%). The DCNN model had accuracy of 92.0%, precision of 91.9%, sensitivity of 92.2%, specificity of 95.7%, and F1 score of 92.0%. Grad-CAM exhibited concentrations of highlighted areas in the intervertebral foraminal region. We developed a DCNN model that intelligently distinguished spondylolysis or spondylolisthesis on lumbar lateral or lumbar dynamic radiographs.
Literature
1.
go back to reference Leone A, Cianfoni A, Cerase A, et al. Lumbar spondylolysis: a review[J]. Skeletal Radiol, 2011,40(6):683-700.CrossRefPubMed Leone A, Cianfoni A, Cerase A, et al. Lumbar spondylolysis: a review[J]. Skeletal Radiol, 2011,40(6):683-700.CrossRefPubMed
2.
go back to reference Choi JH, Ochoa JK, Lubinus A, et al. Management of lumbar spondylolysis in the adolescent athlete: a review of over 200 cases[J]. The Spine Journal, 2022,22(10):1628-1633.CrossRefPubMed Choi JH, Ochoa JK, Lubinus A, et al. Management of lumbar spondylolysis in the adolescent athlete: a review of over 200 cases[J]. The Spine Journal, 2022,22(10):1628-1633.CrossRefPubMed
3.
go back to reference Li J, Liang J, Xu Y, et al. Incidence of lumbar spondylolysis in athletes with low back pain: A systematic evaluation and single-arm meta-analysis[J]. Medicine (Baltimore), 023,102(38):e34857. Li J, Liang J, Xu Y, et al. Incidence of lumbar spondylolysis in athletes with low back pain: A systematic evaluation and single-arm meta-analysis[J]. Medicine (Baltimore), 023,102(38):e34857.
4.
go back to reference Mohile NV, Kuczmarski AS, Lee D, et al. Spondylolysis and Isthmic Spondylolisthesis: A Guide to Diagnosis and Management[J]. J Am Board Fam Med, 2022,35(6):1204-1216.CrossRefPubMed Mohile NV, Kuczmarski AS, Lee D, et al. Spondylolysis and Isthmic Spondylolisthesis: A Guide to Diagnosis and Management[J]. J Am Board Fam Med, 2022,35(6):1204-1216.CrossRefPubMed
5.
go back to reference Aoki Y, Takahashi H, Nakajima A, et al. Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease[J]. Sci Rep, 2020,10(1):6739.CrossRefPubMedPubMedCentral Aoki Y, Takahashi H, Nakajima A, et al. Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease[J]. Sci Rep, 2020,10(1):6739.CrossRefPubMedPubMedCentral
6.
go back to reference Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis[J]. Clin Orthop Relat Res, 1976(117):23-29. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis[J]. Clin Orthop Relat Res, 1976(117):23-29.
7.
go back to reference Hammerberg KW. New concepts on the pathogenesis and classification of spondylolisthesis[J]. Spine (Phila Pa 1976), 2005,30(6 Suppl):S4-S11. Hammerberg KW. New concepts on the pathogenesis and classification of spondylolisthesis[J]. Spine (Phila Pa 1976), 2005,30(6 Suppl):S4-S11.
8.
9.
go back to reference Bydon M, Alvi MA, Goyal A. Degenerative Lumbar Spondylolisthesis: Definition, Natural History, Conservative Management, and Surgical Treatment[J]. Neurosurg Clin N Am, 2019,30(3):299-304.CrossRefPubMed Bydon M, Alvi MA, Goyal A. Degenerative Lumbar Spondylolisthesis: Definition, Natural History, Conservative Management, and Surgical Treatment[J]. Neurosurg Clin N Am, 2019,30(3):299-304.CrossRefPubMed
10.
go back to reference Bernard F, Mazerand E, Gallet C, et al. History of degenerative spondylolisthesis: From anatomical description to surgical management[J]. Neurochirurgie, 2019,65(2-3):75-82.CrossRefPubMed Bernard F, Mazerand E, Gallet C, et al. History of degenerative spondylolisthesis: From anatomical description to surgical management[J]. Neurochirurgie, 2019,65(2-3):75-82.CrossRefPubMed
11.
go back to reference Beck NA, Miller R, Baldwin K, et al. Do Oblique Views Add Value in the Diagnosis of Spondylolysis in Adolescents?[J]. The Journal of Bone and Joint Surgery-American Volume, 2013,95(10):e61-e65. Beck NA, Miller R, Baldwin K, et al. Do Oblique Views Add Value in the Diagnosis of Spondylolysis in Adolescents?[J]. The Journal of Bone and Joint Surgery-American Volume, 2013,95(10):e61-e65.
12.
go back to reference Iguchi T, Wakami T, Kurihara A, et al. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis[J]. J Spinal Disord Tech, 2002,15(2):93-99.CrossRefPubMed Iguchi T, Wakami T, Kurihara A, et al. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis[J]. J Spinal Disord Tech, 2002,15(2):93-99.CrossRefPubMed
13.
go back to reference Butt S, Saifuddin A. The imaging of lumbar spondylolisthesis[J]. Clinical Radiology, 2005,60(5):533-546.CrossRefPubMed Butt S, Saifuddin A. The imaging of lumbar spondylolisthesis[J]. Clinical Radiology, 2005,60(5):533-546.CrossRefPubMed
14.
go back to reference Le NQK, Huynh TT. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation[J]. Front Physiol, 2019,10:1501.CrossRefPubMedPubMedCentral Le NQK, Huynh TT. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation[J]. Front Physiol, 2019,10:1501.CrossRefPubMedPubMedCentral
16.
go back to reference Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J]. Nat Med, 2023,29(2):430-439.CrossRefPubMed Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J]. Nat Med, 2023,29(2):430-439.CrossRefPubMed
17.
go back to reference Lee RY, Kross EK, Torrence J, et al. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome[J]. JAMA Netw Open, 2023,6(3):e231204.CrossRefPubMedPubMedCentral Lee RY, Kross EK, Torrence J, et al. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome[J]. JAMA Netw Open, 2023,6(3):e231204.CrossRefPubMedPubMedCentral
19.
go back to reference Yoon AP, Lee YL, Kane RL, et al. Development and Validation of a Deep Learning Model Using Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs[J]. JAMA Netw Open, 2021,4(5):e216096.CrossRefPubMedPubMedCentral Yoon AP, Lee YL, Kane RL, et al. Development and Validation of a Deep Learning Model Using Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs[J]. JAMA Netw Open, 2021,4(5):e216096.CrossRefPubMedPubMedCentral
20.
go back to reference Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020,196(10):879-887.CrossRefPubMed Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020,196(10):879-887.CrossRefPubMed
21.
go back to reference Keenan T, Chen Q, Agron E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity[J]. Ophthalmology, 2022,129(5):571-584.CrossRefPubMed Keenan T, Chen Q, Agron E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity[J]. Ophthalmology, 2022,129(5):571-584.CrossRefPubMed
22.
go back to reference Chen W, Liu X, Li K, et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography[J]. Eur Radiol, 2022,32(3):1496-1505.CrossRefPubMed Chen W, Liu X, Li K, et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography[J]. Eur Radiol, 2022,32(3):1496-1505.CrossRefPubMed
23.
go back to reference Hong N, Cho SW, Shin S, et al. Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography[J]. J Bone Miner Res, 2023,38(6):887-895.CrossRefPubMed Hong N, Cho SW, Shin S, et al. Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography[J]. J Bone Miner Res, 2023,38(6):887-895.CrossRefPubMed
24.
go back to reference Alukaev D, Kiselev S, Mustafaev T, et al. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation[J]. Eur Spine J, 2022,31(8):2115-2124.CrossRefPubMed Alukaev D, Kiselev S, Mustafaev T, et al. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation[J]. Eur Spine J, 2022,31(8):2115-2124.CrossRefPubMed
25.
go back to reference Perez-Diaz M. Use of systems with deep learning and machine learning for the detection and classification of malignant vs. benign spinal fractures with MRI: can deep/machine learning help us further for detection and characterization?[J]. Eur Radiol, 2023,33(7):5058–5059. Perez-Diaz M. Use of systems with deep learning and machine learning for the detection and classification of malignant vs. benign spinal fractures with MRI: can deep/machine learning help us further for detection and characterization?[J]. Eur Radiol, 2023,33(7):5058–5059.
26.
go back to reference Liao S, Zhan Y, Dong Z, et al. Automatic Lumbar Spondylolisthesis Measurement in CT Images[J]. IEEE Trans Med Imaging, 2016, 35(7): 1658-1669.CrossRefPubMed Liao S, Zhan Y, Dong Z, et al. Automatic Lumbar Spondylolisthesis Measurement in CT Images[J]. IEEE Trans Med Imaging, 2016, 35(7): 1658-1669.CrossRefPubMed
27.
go back to reference Zhao S, Wu X, Chen B, et al. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network[J]. Med Image Anal, 2019, 12, 58:101533.CrossRef Zhao S, Wu X, Chen B, et al. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network[J]. Med Image Anal, 2019, 12, 58:101533.CrossRef
28.
go back to reference Xuan J, Ke B, Ma W, et al. Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods[J]. Front Public Health, 2023, 11: 1044525.CrossRefPubMedPubMedCentral Xuan J, Ke B, Ma W, et al. Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods[J]. Front Public Health, 2023, 11: 1044525.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Trinh GM, Shao HC, Hsieh KL, et al. Detection of Lumbar Spondylolisthesis from X-ray Images Using Deep Learning Network[J]. J Clin Med, 2022, 11(18): 5450.CrossRefPubMedPubMedCentral Trinh GM, Shao HC, Hsieh KL, et al. Detection of Lumbar Spondylolisthesis from X-ray Images Using Deep Learning Network[J]. J Clin Med, 2022, 11(18): 5450.CrossRefPubMedPubMedCentral
31.
go back to reference Mohammed N, Patra DP, Narayan V, et al. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis[J]. Neurosurg Focus, 2018,44(1):E10.CrossRefPubMed Mohammed N, Patra DP, Narayan V, et al. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis[J]. Neurosurg Focus, 2018,44(1):E10.CrossRefPubMed
32.
go back to reference Koslosky E, Gendelberg D. Classification in Brief: The Meyerding Classification System of Spondylolisthesis[J]. Clin Orthop Relat Res, 2020,478(5):1125-1130.CrossRefPubMedPubMedCentral Koslosky E, Gendelberg D. Classification in Brief: The Meyerding Classification System of Spondylolisthesis[J]. Clin Orthop Relat Res, 2020,478(5):1125-1130.CrossRefPubMedPubMedCentral
33.
go back to reference Sun Y, Wang H, Yang D, et al. Characterization of radiographic features of consecutive lumbar spondylolisthesis[J]. Medicine (Baltimore), 2016,95(46):e5323.CrossRefPubMed Sun Y, Wang H, Yang D, et al. Characterization of radiographic features of consecutive lumbar spondylolisthesis[J]. Medicine (Baltimore), 2016,95(46):e5323.CrossRefPubMed
34.
go back to reference Man T, Le Q. EfficientNetV2: Smaller Models and Faster Training[J]. International Conference on Machine Learning[C], 2021. Man T, Le Q. EfficientNetV2: Smaller Models and Faster Training[J]. International Conference on Machine Learning[C], 2021.
35.
go back to reference Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.CrossRef Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.CrossRef
36.
go back to reference He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. arXiv, 2015. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. arXiv, 2015.
37.
go back to reference Huang G, Liu Z, van der Maaten L, et al. Densely Connected Convolutional Networks[J]. arXiv, 2018. Huang G, Liu Z, van der Maaten L, et al. Densely Connected Convolutional Networks[J]. arXiv, 2018.
38.
go back to reference Man T, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[J]. Proceedings of the 36th International Conference on Machine Learning[C], 2019:6105–6114. Man T, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[J]. Proceedings of the 36th International Conference on Machine Learning[C], 2019:6105–6114.
39.
go back to reference Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017:618-626. Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017:618-626.
40.
go back to reference Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019,25(1):44-56.CrossRefPubMed Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019,25(1):44-56.CrossRefPubMed
41.
go back to reference Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist[J]. European Radiology, 2023,33(3):1575-1588.CrossRefPubMed Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist[J]. European Radiology, 2023,33(3):1575-1588.CrossRefPubMed
42.
go back to reference Chen Y, Sun Q, Li Z, et al. Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs[J]. Skeletal Radiology, 2023,52(8):1577-1583.CrossRefPubMed Chen Y, Sun Q, Li Z, et al. Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs[J]. Skeletal Radiology, 2023,52(8):1577-1583.CrossRefPubMed
43.
go back to reference Fritz B, Yi PH, Kijowski R, et al. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches[J]. Invest Radiol, 2023,58(1):3-13.CrossRefPubMed Fritz B, Yi PH, Kijowski R, et al. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches[J]. Invest Radiol, 2023,58(1):3-13.CrossRefPubMed
44.
go back to reference Chae H, Hong SH, Yeoh HJ, et al. Improved diagnostic performance of plain radiography for cervical ossification of the posterior longitudinal ligament using deep learning[J]. PLOS ONE, 2022,17(4):e267643.CrossRef Chae H, Hong SH, Yeoh HJ, et al. Improved diagnostic performance of plain radiography for cervical ossification of the posterior longitudinal ligament using deep learning[J]. PLOS ONE, 2022,17(4):e267643.CrossRef
45.
go back to reference Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020,9(2):14.PubMedPubMedCentral Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020,9(2):14.PubMedPubMedCentral
46.
go back to reference Soffer S, Ben-Cohen A, Shimon O, et al. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide[J]. Radiology, 2019,290(3):590-606.CrossRefPubMed Soffer S, Ben-Cohen A, Shimon O, et al. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide[J]. Radiology, 2019,290(3):590-606.CrossRefPubMed
47.
go back to reference Trinh, G.M, Shao, H, Hsieh, KL, et al. LumbarNet: A Deep Learning Network for the Automated Detection of Lumbar Spondylolisthesis From X-Ray Images[J]. Preprints 2022, 2022060043. Trinh, G.M, Shao, H, Hsieh, KL, et al. LumbarNet: A Deep Learning Network for the Automated Detection of Lumbar Spondylolisthesis From X-Ray Images[J]. Preprints 2022, 2022060043.
48.
go back to reference Khare MR, Havaldar RH. Predicting the anterior slippage of vertebral lumbar spine using Densenet-201[J]. Biomedical Signal Processing and control, 2023,86. Khare MR, Havaldar RH. Predicting the anterior slippage of vertebral lumbar spine using Densenet-201[J]. Biomedical Signal Processing and control, 2023,86.
49.
go back to reference Varcin F, Erbay H, Cetin E, et al. Diagnosis of Lumbar Spondylolisthesis via Convolutional Neural Networks, 2019[C]. IEEE, 2019. Varcin F, Erbay H, Cetin E, et al. Diagnosis of Lumbar Spondylolisthesis via Convolutional Neural Networks, 2019[C]. IEEE, 2019.
50.
go back to reference Zhang J, Lin H, Wang H, et al. Deep learning system assisted detection and localization of lumbar spondylolisthesis[J]. Frontiers in Bioengineering and Biotechnology, 2023,11. Zhang J, Lin H, Wang H, et al. Deep learning system assisted detection and localization of lumbar spondylolisthesis[J]. Frontiers in Bioengineering and Biotechnology, 2023,11.
Metadata
Title
The Classification of Lumbar Spondylolisthesis X-Ray Images Using Convolutional Neural Networks
Authors
Wutong Chen
Du Junsheng
Yanzhen Chen
Yifeng Fan
Hengzhi Liu
Chang Tan
Xuanming Shao
Xinzhi Li
Publication date
18-04-2024
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-01115-9