Skip to main content
Top
Published in: Skeletal Radiology 1/2021

01-01-2021 | Spondylolisthesis | Scientific Article

Accurate prediction of lumbar microdecompression level with an automated MRI grading system

Authors: Brandon L. Roller, Robert D. Boutin, Tadhg J. O’Gara, Ziyad O. Knio, Amir Jamaludin, Josh Tan, Leon Lenchik

Published in: Skeletal Radiology | Issue 1/2021

Login to get access

Abstract

Objective

Lumbar spine MRI interpretations have high variability reducing utility for surgical planning. This study evaluated a convolutional neural network (CNN) framework that generates automated MRI grading for its ability to predict the level that was surgically decompressed.

Materials and methods

Patients who had single-level decompression were retrospectively evaluated. Sagittal T2 images were processed by a CNN (SpineNet), which provided grading for the following: central canal stenosis, disc narrowing, disc degeneration, spondylolisthesis, upper/lower endplate morphologic changes, and upper/lower marrow changes. The grades were used to calculate an aggregate score. The variables and the aggregate score were analyzed for their ability to predict the surgical level. For each surgical level subgroup, the surgical level aggregate scores were compared with the non-surgical levels.

Results

A total of 141 patients met the inclusion criteria (82 women, 59 men; mean age 64 years; age range 28–89 years). SpineNet did not identify central canal stenosis in 32 patients. Of the remaining 109, 96 (88%) patients had a decompression at the level of greatest stenosis. The higher stenotic grade was present only at the surgical level in 82/96 (85%) patients. The level with the highest aggregate score matched the surgical level in 103/141 (73%) patients and was unique to the surgical level in 91/103 (88%) patients. Overall, the highest aggregate score identified the surgical level in 91/141 (65%) patients. The aggregate MRI score mean was significantly higher for the L3-S1 surgical levels.

Conclusion

A previously developed CNN framework accurately predicts the level of microdecompression for degenerative spinal stenosis in most patients.
Literature
6.
go back to reference Imaad-ur-Rehman, Hamid RS, Akhtar W, Shamim MS, Naqi R, Siddiq HI. Observer variation in MRI evaluation of patients with suspected lumbar disc herniation and nerve root compression: comparison of neuroradiologist and neurosurgeon’s interpretations. J Pak Med Assoc. 2012 [cited 2019 Jan 16];62:826–829. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23862259. Imaad-ur-Rehman, Hamid RS, Akhtar W, Shamim MS, Naqi R, Siddiq HI. Observer variation in MRI evaluation of patients with suspected lumbar disc herniation and nerve root compression: comparison of neuroradiologist and neurosurgeon’s interpretations. J Pak Med Assoc. 2012 [cited 2019 Jan 16];62:826–829. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23862259.
7.
8.
11.
13.
16.
go back to reference Sharma K, Rupprecht C, Caroli A, Aparicio MC, Remuzzi A, Baust M, et al. Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep [Internet]. 2017 [cited 2019 may 31];7:2049. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28515418. Sharma K, Rupprecht C, Caroli A, Aparicio MC, Remuzzi A, Baust M, et al. Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep [Internet]. 2017 [cited 2019 may 31];7:2049. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28515418.
17.
go back to reference Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch [Internet]. 2019 [cited 2019 May 31]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31098801. Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch [Internet]. 2019 [cited 2019 May 31]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​31098801.
18.
go back to reference Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, et al. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J [Internet]. 2017 [cited 2019 Jan 16];26:1374–83. Available from: http://link.springer.com/10.1007/s00586-017-4956-3 Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, et al. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J [Internet]. 2017 [cited 2019 Jan 16];26:1374–83. Available from: http://​link.​springer.​com/​10.​1007/​s00586-017-4956-3
19.
go back to reference Jamaludin A, Kadir A, Zisserman A, Urban A, Fairbank J, Williams F. Adapting a deep learning model to a different grading system in a new dataset. Baniff: Int Soc Study Lumbar Spine Annu Meet; 2018. Jamaludin A, Kadir A, Zisserman A, Urban A, Fairbank J, Williams F. Adapting a deep learning model to a different grading system in a new dataset. Baniff: Int Soc Study Lumbar Spine Annu Meet; 2018.
20.
go back to reference Kadir T, Zisserman A, Fairbank J, Jamaludin A, Urban J. SpineNet: automated vertebra and disc gradings using deep learning. Radiol Soc North Am Annu Meet. Chicago, IL; 2018. Kadir T, Zisserman A, Fairbank J, Jamaludin A, Urban J. SpineNet: automated vertebra and disc gradings using deep learning. Radiol Soc North Am Annu Meet. Chicago, IL; 2018.
21.
go back to reference Lu J-T, Pedemonte S, Bizzo B, Doyle S, Andriole KP, Michalski MH, et al. DeepSPINE: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. Proc Mach Learn Res. 2018 [cited 2019 May 31];85:403–419. Available from: http://arxiv.org/abs/1807.10215 Lu J-T, Pedemonte S, Bizzo B, Doyle S, Andriole KP, Michalski MH, et al. DeepSPINE: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. Proc Mach Learn Res. 2018 [cited 2019 May 31];85:403–419. Available from: http://​arxiv.​org/​abs/​1807.​10215
25.
go back to reference Finkenstaedt T, Del Grande F, Bolog N, Ulrich NH, Tok S, Burgstaller JM, et al. Correlation of listhesis on upright radiographs and central lumbar spinal canal stenosis on supine MRI: is it possible to predict lumbar spinal canal stenosis? Skeletal Radiol [Internet]. 2018 [cited 2019 may 30];47:1269–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29651713. Finkenstaedt T, Del Grande F, Bolog N, Ulrich NH, Tok S, Burgstaller JM, et al. Correlation of listhesis on upright radiographs and central lumbar spinal canal stenosis on supine MRI: is it possible to predict lumbar spinal canal stenosis? Skeletal Radiol [Internet]. 2018 [cited 2019 may 30];47:1269–75. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29651713.
26.
go back to reference Jönsson B, Annertz M, Sjöberg C, Strömqvist B. A prospective and consecutive study of surgically treated lumbar spinal stenosis. Part I: clinical features related to radiographic findings. Spine (Phila Pa 1976) [Internet]. 1997 [cited 2019 may 30];22:2932–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9431629. Jönsson B, Annertz M, Sjöberg C, Strömqvist B. A prospective and consecutive study of surgically treated lumbar spinal stenosis. Part I: clinical features related to radiographic findings. Spine (Phila Pa 1976) [Internet]. 1997 [cited 2019 may 30];22:2932–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9431629.
27.
go back to reference Bechara BP, Agarwal V, Boardman J, Perera S, Weiner DK, Vo N, et al. Correlation of pain with objective quantification of magnetic resonance images in older adults with chronic low back pain. Spine (Phila Pa 1976) [Internet]. 2014 [cited 2019 may 29];39:469–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24384652. Bechara BP, Agarwal V, Boardman J, Perera S, Weiner DK, Vo N, et al. Correlation of pain with objective quantification of magnetic resonance images in older adults with chronic low back pain. Spine (Phila Pa 1976) [Internet]. 2014 [cited 2019 may 29];39:469–75. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24384652.
28.
go back to reference Ziegler DS, Carreon L, Andersen MO, Jensen RK. The Association between preoperative MRI findings and surgical revision within three years after surgery for lumbar disc herniation. Spine (Phila Pa 1976) [Internet]. 2019 [cited 2019 may 29];44:818–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30475335. Ziegler DS, Carreon L, Andersen MO, Jensen RK. The Association between preoperative MRI findings and surgical revision within three years after surgery for lumbar disc herniation. Spine (Phila Pa 1976) [Internet]. 2019 [cited 2019 may 29];44:818–25. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30475335.
29.
go back to reference Takatalo J, Karppinen J, Näyhä S, Taimela S, Niinimäki J, Blanco Sequeiros R, et al. Association between adolescent sport activities and lumbar disk degeneration among young adults. Scand J Med Sci Sports [Internet]. 2017 [cited 2019 may 29];27:1993–2001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28075521. Takatalo J, Karppinen J, Näyhä S, Taimela S, Niinimäki J, Blanco Sequeiros R, et al. Association between adolescent sport activities and lumbar disk degeneration among young adults. Scand J Med Sci Sports [Internet]. 2017 [cited 2019 may 29];27:1993–2001. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28075521.
30.
go back to reference Takatalo J, Karppinen J, Niinimäki J, Taimela S, Näyhä S, Mutanen P, et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976) [Internet]. 2011 [cited 2019 may 29];36:2180–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21358475. Takatalo J, Karppinen J, Niinimäki J, Taimela S, Näyhä S, Mutanen P, et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976) [Internet]. 2011 [cited 2019 may 29];36:2180–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21358475.
32.
go back to reference Covaro A, Vilà-Canet G, de Frutos AG, Ubierna MT, Ciccolo F, Caceres E. Management of degenerative lumbar spinal stenosis: an evidence-based review. EFORT open Rev [Internet]. British Editorial Society of Bone and Joint Surgery; 2016 [cited 2019 Jan 21];1:267–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28461958. Covaro A, Vilà-Canet G, de Frutos AG, Ubierna MT, Ciccolo F, Caceres E. Management of degenerative lumbar spinal stenosis: an evidence-based review. EFORT open Rev [Internet]. British Editorial Society of Bone and Joint Surgery; 2016 [cited 2019 Jan 21];1:267–74. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28461958.
33.
go back to reference Haddadi K, Ganjeh Qazvini HR. Outcome after surgery of lumbar spinal stenosis: a randomized comparison of bilateral laminotomy, trumpet laminectomy, and conventional laminectomy. Front Surg [Internet]. Frontiers Media SA; 2016 [cited 2019 Jan 21];3:19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27092304. Haddadi K, Ganjeh Qazvini HR. Outcome after surgery of lumbar spinal stenosis: a randomized comparison of bilateral laminotomy, trumpet laminectomy, and conventional laminectomy. Front Surg [Internet]. Frontiers Media SA; 2016 [cited 2019 Jan 21];3:19. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27092304.
34.
go back to reference Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS, Bendix T. Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976) [Internet]. 2005 [cited 2019 Jan 21];30:1173–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15897832. Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS, Bendix T. Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976) [Internet]. 2005 [cited 2019 Jan 21];30:1173–80. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15897832.
37.
go back to reference Guo R, Yang X, Zhong Y, Lai Q, Gao T, Lai F, et al. Correlations between Modic change and degeneration in 3-joint complex of the lower lumbar spine: A retrospective study. Medicine (Baltimore) [Internet]. Wolters Kluwer Health; 2018 [cited 2019 Jan 21];97:e12496. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30235755. Guo R, Yang X, Zhong Y, Lai Q, Gao T, Lai F, et al. Correlations between Modic change and degeneration in 3-joint complex of the lower lumbar spine: A retrospective study. Medicine (Baltimore) [Internet]. Wolters Kluwer Health; 2018 [cited 2019 Jan 21];97:e12496. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30235755.
41.
go back to reference Tonosu J, Oka H, Higashikawa A, Okazaki H, Tanaka S, Matsudaira K. The associations between magnetic resonance imaging findings and low back pain: a 10-year longitudinal analysis. Espinoza Orías AA, editor. PLoS One [Internet]. 2017 [cited 2019 Feb 6];12:e0188057. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29141001. Tonosu J, Oka H, Higashikawa A, Okazaki H, Tanaka S, Matsudaira K. The associations between magnetic resonance imaging findings and low back pain: a 10-year longitudinal analysis. Espinoza Orías AA, editor. PLoS One [Internet]. 2017 [cited 2019 Feb 6];12:e0188057. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29141001.
42.
go back to reference Bhalla A, Cha TD, Weber C, Nerland U, Gulati S, Lønne G. Decompressive surgery for lumbar spinal stenosis across the Atlantic: a comparison of preoperative MRI between matched cohorts from the US and Norway. Acta Neurochir (Wien) [Internet]. 2018 [cited 2019 Jan 16];160:419–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29350291. Bhalla A, Cha TD, Weber C, Nerland U, Gulati S, Lønne G. Decompressive surgery for lumbar spinal stenosis across the Atlantic: a comparison of preoperative MRI between matched cohorts from the US and Norway. Acta Neurochir (Wien) [Internet]. 2018 [cited 2019 Jan 16];160:419–24. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29350291.
43.
go back to reference Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ [Internet]. BMJ Publishing Group; 2015 [cited 2019 Jan 21];350:h1603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25833966. Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ [Internet]. BMJ Publishing Group; 2015 [cited 2019 Jan 21];350:h1603. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25833966.
44.
go back to reference Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, et al. Comparative effectiveness of microdecompression and laminectomy for central lumbar spinal stenosis: study protocol for an observational study. BMJ Open [Internet]. 2014 [cited 2019 Feb 6];4:e004651. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24650809. Nerland US, Jakola AS, Solheim O, Weber C, Rao V, Lønne G, et al. Comparative effectiveness of microdecompression and laminectomy for central lumbar spinal stenosis: study protocol for an observational study. BMJ Open [Internet]. 2014 [cited 2019 Feb 6];4:e004651. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24650809.
46.
go back to reference Cheung KMC, Karppinen J, Chan D, Ho DWH, Song Y-Q, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) [Internet]. 2009 [cited 2019 Feb 6];34:934–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19532001. Cheung KMC, Karppinen J, Chan D, Ho DWH, Song Y-Q, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) [Internet]. 2009 [cited 2019 Feb 6];34:934–40. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19532001.
Metadata
Title
Accurate prediction of lumbar microdecompression level with an automated MRI grading system
Authors
Brandon L. Roller
Robert D. Boutin
Tadhg J. O’Gara
Ziyad O. Knio
Amir Jamaludin
Josh Tan
Leon Lenchik
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 1/2021
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-020-03505-w

Other articles of this Issue 1/2021

Skeletal Radiology 1/2021 Go to the issue