Skip to main content
Top
Published in: Neurological Sciences 5/2021

01-05-2021 | Spinal Muscular Atrophy | Original Article

Discovery of specific mutations in spinal muscular atrophy patients by next-generation sequencing

Authors: Yu-lian Fang, Na Li, Xiu-fang Zhi, Jie Zheng, Yang Liu, Lin-jie Pu, Chun-yu Gu, Jian-bo Shu, Chun-quan Cai

Published in: Neurological Sciences | Issue 5/2021

Login to get access

Abstract

Spinal muscular atrophy (SMA) is a type of autosomal recessive genetic disease, which seriously threatens the health and lives of children and adolescents. We attempted to find some genes and mutations related to the onset of SMA. Eighty-three whole-blood samples were collected from 28 core families, including 28 probands with clinically suspected SMA (20 SMA patients, 5 non-SMA children, and 3 patients with unknown etiology) and their parents. The multiplex ligation probe amplification (MLPA) was performed for preliminary diagnosis. The high-throughput sequencing technology was used to conduct the whole-exome sequencing analysis. We analyzed the mutations in adjacent genes of SMN1 gene and the unique mutations that only occurred in SMA patients. According to the MLPA results, 20 probands were regarded as experimental group and 5 non-SMA children as control group. A total of 10 mutations were identified in the adjacent genes of SMN1 gene. GUSBP1 g.[69515863G>A], GUSBP1 g.[69515870C>T], and SMA4 g.[69515738C>A] were the top three most frequent sites. SMA4 g.[69515726A>G] and OCLN c.[818G>T] have not been reported in the existing relevant researches. Seventeen point mutations in the DYNC1H1 gene were only recognized in SMA children, and the top two most common mutations were c.[2869-34A>T] and c.[345-89A>G]; c.[7473+105C>T] was the splicing mutation that might change the mRNA splicing site. The mutations of SMA4 g.[69515726A>G], OCLN c.[818G>T], DYNC1H1 c.[2869-34A>T], DYNC1H1 c.[345-89A>G], and DYNC1H1 c.[7473+105C>T] in the adjacent genes of SMN1 gene and other genes might be related to the onset of SMA.
Literature
1.
go back to reference Gilliam TC, Brzustowicz LM, Castilla LH, Lehner T, Penchaszadeh GK, Daniels RJ, Byth BC, Knowles J, Hislop JE, Shapira Y, Dubowitz V, Munsat TL, Ott J, Davies KE (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345(6278):823–825CrossRef Gilliam TC, Brzustowicz LM, Castilla LH, Lehner T, Penchaszadeh GK, Daniels RJ, Byth BC, Knowles J, Hislop JE, Shapira Y, Dubowitz V, Munsat TL, Ott J, Davies KE (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345(6278):823–825CrossRef
2.
go back to reference Malcov M, Schwartz T, Mei-Raz N, Yosef DB, Amit A, Lessing JB, Shomrat R, Orr-Urtreger A, Yaron Y (2004) Multiplex nested PCR for preimplantation genetic diagnosis of spinal muscular atrophy. Fetal Diagn Ther 19:199–206CrossRef Malcov M, Schwartz T, Mei-Raz N, Yosef DB, Amit A, Lessing JB, Shomrat R, Orr-Urtreger A, Yaron Y (2004) Multiplex nested PCR for preimplantation genetic diagnosis of spinal muscular atrophy. Fetal Diagn Ther 19:199–206CrossRef
3.
go back to reference Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K (1997) Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 61(1):40–50CrossRef Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K (1997) Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 61(1):40–50CrossRef
4.
go back to reference Russman BS (2007) Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 22(8):946–951CrossRef Russman BS (2007) Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 22(8):946–951CrossRef
5.
go back to reference Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D, Dubowitz V, Zerres K, Hausmanowa-Petrusewicz I, Ott J, Munsat TL, Gilliam TC (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature. 344(6266):540–541CrossRef Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D, Dubowitz V, Zerres K, Hausmanowa-Petrusewicz I, Ott J, Munsat TL, Gilliam TC (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature. 344(6266):540–541CrossRef
6.
go back to reference Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368CrossRef Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368CrossRef
7.
go back to reference Chen Q, Baird SD, Mahadevan M, Besner-Johnston A, Farahani R, Xuan J, Kang X, Lefebvre C, Ikeda JE, Korneluk RG, MacKenzie AE (1998) Sequence of a 131-kb region of 5q13. 1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 48(1):121–127CrossRef Chen Q, Baird SD, Mahadevan M, Besner-Johnston A, Farahani R, Xuan J, Kang X, Lefebvre C, Ikeda JE, Korneluk RG, MacKenzie AE (1998) Sequence of a 131-kb region of 5q13. 1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 48(1):121–127CrossRef
8.
go back to reference Sneha P, Zenith TU, Abu Habib US, Evangeline J, Thirumal Kumar D, George Priya Doss C et al (2018) Impact of missense mutations in survival motor neuron protein (SMN1) leading to spinal muscular atrophy (SMA): a computational approach. Metab Brain Dis 33(6):1823–1834CrossRef Sneha P, Zenith TU, Abu Habib US, Evangeline J, Thirumal Kumar D, George Priya Doss C et al (2018) Impact of missense mutations in survival motor neuron protein (SMN1) leading to spinal muscular atrophy (SMA): a computational approach. Metab Brain Dis 33(6):1823–1834CrossRef
9.
go back to reference Cuscó I, Barceló MJ, Rojas-García R, Illa I, Gámez J, Cervera C et al (2005) SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol 253(1):21–25CrossRef Cuscó I, Barceló MJ, Rojas-García R, Illa I, Gámez J, Cervera C et al (2005) SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol 253(1):21–25CrossRef
10.
go back to reference Clermont O, Burlet P, Benit P, Chanterau D, Saugier-Veber P, Munnich A, Cusin V (2004) Molecular analysis of SMA patients without homozygous SMN1 deletions using a new strategy for identification of SMN1 subtle mutations. Hum Mutat 24(5):417–427CrossRef Clermont O, Burlet P, Benit P, Chanterau D, Saugier-Veber P, Munnich A, Cusin V (2004) Molecular analysis of SMA patients without homozygous SMN1 deletions using a new strategy for identification of SMN1 subtle mutations. Hum Mutat 24(5):417–427CrossRef
11.
go back to reference Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM (1998) Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 20(1):83–86CrossRef Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM (1998) Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 20(1):83–86CrossRef
12.
go back to reference Ma H, Wang Y, Mi Z, Wu Y, Zhao P, Zhao S et al (1999) Study of NAIP gene in spinal muscular atrophy. Chin J Med Gene 16(2):97–98 Ma H, Wang Y, Mi Z, Wu Y, Zhao P, Zhao S et al (1999) Study of NAIP gene in spinal muscular atrophy. Chin J Med Gene 16(2):97–98
13.
go back to reference Oates EC, Rossor AM, Hafezparast M, Gonzalez M, Speziani F, MacArthur DG, Lek M, Cottenie E, Scoto M, Foley AR, Hurles M, Houlden H, Greensmith L, Auer-Grumbach M, Pieber TR, Strom TM, Schule R, Herrmann DN, Sowden JE, Acsadi G, Menezes MP, Clarke NF, Züchner S, UK10K, Muntoni F, North KN, Reilly MM (2013) Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet 92(6):965–973CrossRef Oates EC, Rossor AM, Hafezparast M, Gonzalez M, Speziani F, MacArthur DG, Lek M, Cottenie E, Scoto M, Foley AR, Hurles M, Houlden H, Greensmith L, Auer-Grumbach M, Pieber TR, Strom TM, Schule R, Herrmann DN, Sowden JE, Acsadi G, Menezes MP, Clarke NF, Züchner S, UK10K, Muntoni F, North KN, Reilly MM (2013) Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet 92(6):965–973CrossRef
14.
go back to reference Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R (2014) EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 5:4287CrossRef Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R (2014) EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 5:4287CrossRef
15.
go back to reference He J, Zhang QJ, Lin QF, Chen YF, Lin XZ, Lin MT, Murong SX, Wang N, Chen WJ (2013) Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy. Gene. 518(2):325–329CrossRef He J, Zhang QJ, Lin QF, Chen YF, Lin XZ, Lin MT, Murong SX, Wang N, Chen WJ (2013) Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy. Gene. 518(2):325–329CrossRef
16.
go back to reference Sheridan C (2018) Gene therapy rescues newborns with spinal muscular atrophy. Nat Biotechnol 36(8):669–670CrossRef Sheridan C (2018) Gene therapy rescues newborns with spinal muscular atrophy. Nat Biotechnol 36(8):669–670CrossRef
17.
go back to reference Groen EJN, Talbot K, Gillingwater TH (2018) Advances in therapy for spinal muscular atrophy: promises and challenges. Nat Rev Neurol 14(4):214–224CrossRef Groen EJN, Talbot K, Gillingwater TH (2018) Advances in therapy for spinal muscular atrophy: promises and challenges. Nat Rev Neurol 14(4):214–224CrossRef
18.
go back to reference Theodosiou AM, Morrison KE, Nesbit AM, Daniels RJ, Campbell L, Francis MJ, Christodoulou Z, Davies KE (1994) Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in 5q13. Am J Hum Genet 55(6):1209–1217PubMedPubMedCentral Theodosiou AM, Morrison KE, Nesbit AM, Daniels RJ, Campbell L, Francis MJ, Christodoulou Z, Davies KE (1994) Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in 5q13. Am J Hum Genet 55(6):1209–1217PubMedPubMedCentral
19.
go back to reference Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Phys Cell Phys 286(6):C1213–C1228CrossRef Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Phys Cell Phys 286(6):C1213–C1228CrossRef
20.
go back to reference Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N (2006) Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res 66(18):9125–9133CrossRef Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N (2006) Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res 66(18):9125–9133CrossRef
21.
go back to reference Abdel-Hamid MS, Abdel-Salam GMH, Issa MY, Emam BA, Zaki MS (2017) Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J Hum Genet 62(5):553–559CrossRef Abdel-Hamid MS, Abdel-Salam GMH, Issa MY, Emam BA, Zaki MS (2017) Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J Hum Genet 62(5):553–559CrossRef
22.
go back to reference Arun V, Worrell L, Wiley JC, Kaplan DR, Guha A (2013) Neurofibromin interacts with the cytoplasmic dynein heavy chain 1 in melanosomes of human melanocytes. FEBS Lett 587(10):1466–1473CrossRef Arun V, Worrell L, Wiley JC, Kaplan DR, Guha A (2013) Neurofibromin interacts with the cytoplasmic dynein heavy chain 1 in melanosomes of human melanocytes. FEBS Lett 587(10):1466–1473CrossRef
23.
go back to reference Zheng Z, Wan Q, Liu J, Zhu H, Chu X, Du Q (2013) Evidence for dynein and astral microtubule–mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells. Mol Biol Cell 24(7):901–913CrossRef Zheng Z, Wan Q, Liu J, Zhu H, Chu X, Du Q (2013) Evidence for dynein and astral microtubule–mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells. Mol Biol Cell 24(7):901–913CrossRef
24.
go back to reference Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14(11):713–726CrossRef Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14(11):713–726CrossRef
25.
go back to reference Sucularli C, Arslantas M (2017) Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H. Mol Cell Probes 34:21–29CrossRef Sucularli C, Arslantas M (2017) Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H. Mol Cell Probes 34:21–29CrossRef
26.
go back to reference Ahmad-Annuar A, Shah P, Hafezparast M, Hummerich H, Witherden AS, Morrison KE, Shaw PJ, Kirby J, Warner TT, Crosby A, Proukakis C, Wilkinson P, Orrell RW, Bradley L, Martin JE, Fisher EM (2003) No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):150–157CrossRef Ahmad-Annuar A, Shah P, Hafezparast M, Hummerich H, Witherden AS, Morrison KE, Shaw PJ, Kirby J, Warner TT, Crosby A, Proukakis C, Wilkinson P, Orrell RW, Bradley L, Martin JE, Fisher EM (2003) No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):150–157CrossRef
27.
go back to reference Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112CrossRef Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112CrossRef
28.
go back to reference Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D et al (2012) Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78(22):1714–1720CrossRef Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D et al (2012) Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78(22):1714–1720CrossRef
29.
go back to reference Niu Q, Wang X, Shi M, Jin Q (2015) A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance. Neurol Genet 1(2):e20CrossRef Niu Q, Wang X, Shi M, Jin Q (2015) A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance. Neurol Genet 1(2):e20CrossRef
30.
go back to reference Garrett CA, Barri M, Kuta A, Soura V, Deng W, Fisher EM et al (2014) DYNC1H1 mutation alters transport kinetics and ERK1/2-cFos signalling in a mouse model of distal spinal muscular atrophy. Brain 137(Pt 7):1883–1893CrossRef Garrett CA, Barri M, Kuta A, Soura V, Deng W, Fisher EM et al (2014) DYNC1H1 mutation alters transport kinetics and ERK1/2-cFos signalling in a mouse model of distal spinal muscular atrophy. Brain 137(Pt 7):1883–1893CrossRef
Metadata
Title
Discovery of specific mutations in spinal muscular atrophy patients by next-generation sequencing
Authors
Yu-lian Fang
Na Li
Xiu-fang Zhi
Jie Zheng
Yang Liu
Lin-jie Pu
Chun-yu Gu
Jian-bo Shu
Chun-quan Cai
Publication date
01-05-2021
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 5/2021
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-020-04697-8

Other articles of this Issue 5/2021

Neurological Sciences 5/2021 Go to the issue