Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Spina Bifida | Research

Physical activity in wheelchair-using youth with spina bifida: an observational study

Authors: Manon A. T. Bloemen, Rita J. G. van den Berg-Emons, Matthijs Tuijt, Carla F. J. Nooijen, Tim Takken, Frank J. G. Backx, Marleen Vos, Janke F. de Groot

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Even though typically developing youth are already at risk for physical inactivity, youth with spina bifida may be even at higher risk as a consequence of their reduced mobility. No objective data is available for youth with spina bifida who use a manual wheelchair, so the seriousness of the problem is unknown. The purpose of this observational study was to quantify physical activity in wheelchair-using youth with spina bifida and evaluate the intensity of activities.

Methods

Fifty-three children and adolescents (5–19 years) with spina bifida who use a manual wheelchair for daily life, long distances or sports were included. To assess time spent in several types of activities VitaMove data of 34 participants were used and were presented as time spent sedentary and time spent physically active. This was compared to reference data of typically developing youth. To assess time spent in several intensities Actiheart data of 36 participants were used. The intensities were categorized according to the American College of Sports Medicine, ranging from very light intensity to near to maximal intensity. Data of 25 participants were used to combine type of activity and intensity.

Results

Children and adolescents with spina bifida who use a manual wheelchair were more sedentary (94.3% versus 78.0% per 24 h, p < 0.000) and less physically active (5.0% versus 12.2% per 24 h, p < 0.000) compared to typically developing peers. Physical activity during weekend days was worse compared to school days; 19% met the Guidelines of Physical Activity during school days and 8% during weekend days. The intensities per activity varied extensively between participants.

Conclusions

Children and adolescents with spina bifida who use a manual wheelchair are less physically active and more sedentary than typically developing youth. The physical activity levels on school days seem to be more favorable than the physical activity levels on a weekend day. The low levels of physical activity need our attention in pediatric rehabilitation practice. The different intensities during activities indicate the importance of individually tailored assessments and interventions.
Literature
1.
go back to reference Burghard M, Knitel K, van Oost I, Tremblay MS, Takken T. Dutch physical activity report card study group. Is our youth cycling to health? Results from the netherlands' 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(11 Suppl 2):S218–24.PubMedCrossRef Burghard M, Knitel K, van Oost I, Tremblay MS, Takken T. Dutch physical activity report card study group. Is our youth cycling to health? Results from the netherlands' 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(11 Suppl 2):S218–24.PubMedCrossRef
2.
go back to reference Rimmer JA, Rowland JL. Physical activity for youth with disabilities: a critical need in an underserved population. Dev Neurorehabil. 2008;11(2):141–8.PubMedCrossRef Rimmer JA, Rowland JL. Physical activity for youth with disabilities: a critical need in an underserved population. Dev Neurorehabil. 2008;11(2):141–8.PubMedCrossRef
3.
go back to reference Rimmer JH, Marques AC. Physical activity for people with disabilities. Lancet. 2012;380(9838):193–5.PubMedCrossRef Rimmer JH, Marques AC. Physical activity for people with disabilities. Lancet. 2012;380(9838):193–5.PubMedCrossRef
4.
go back to reference Crytzer TM, Dicianno BE, Kapoor R. Physical activity, exercise, and health-related measures of fitness in adults with spina bifida: a review of the literature. PM R. 2013;5(12):1051–62.PubMedCrossRef Crytzer TM, Dicianno BE, Kapoor R. Physical activity, exercise, and health-related measures of fitness in adults with spina bifida: a review of the literature. PM R. 2013;5(12):1051–62.PubMedCrossRef
5.
go back to reference Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.PubMedCrossRef Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.PubMedCrossRef
6.
go back to reference Kelly P, Fitzsimons C, Baker G. Should we reframe how we think about physical activity and sedentary behaviour measurement? validity and reliability reconsidered. Int J Behav Nutr Phys Act. 2016;13:32.PubMedPubMedCentralCrossRef Kelly P, Fitzsimons C, Baker G. Should we reframe how we think about physical activity and sedentary behaviour measurement? validity and reliability reconsidered. Int J Behav Nutr Phys Act. 2016;13:32.PubMedPubMedCentralCrossRef
7.
go back to reference Armstrong N, Welsman JR. The physical activity patterns of european youth with reference to methods of assessment. Sports Med. 2006;36(12):1067–86.PubMedCrossRef Armstrong N, Welsman JR. The physical activity patterns of european youth with reference to methods of assessment. Sports Med. 2006;36(12):1067–86.PubMedCrossRef
8.
go back to reference American college of sports medicine. Exercise prescription for healthy populations & special considerations. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. American college of sports medicine. Exercise prescription for healthy populations & special considerations. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.
9.
go back to reference Short KR, Frimberger D. A review of the potential for cardiometabolic dysfunction in youth with spina bifida and the role for physical activity and structured exercise. Int J Pediatr. 2012;2012:541363.PubMedPubMedCentralCrossRef Short KR, Frimberger D. A review of the potential for cardiometabolic dysfunction in youth with spina bifida and the role for physical activity and structured exercise. Int J Pediatr. 2012;2012:541363.PubMedPubMedCentralCrossRef
10.
go back to reference Schoenmakers MA, de Groot JF, Gorter JW, Hillaert JL, Helders PJ, Takken T. Muscle strength, aerobic capacity and physical activity in independent ambulating children with lumbosacral spina bifida. Disabil Rehabil. 2009;31(4):259–66.PubMedCrossRef Schoenmakers MA, de Groot JF, Gorter JW, Hillaert JL, Helders PJ, Takken T. Muscle strength, aerobic capacity and physical activity in independent ambulating children with lumbosacral spina bifida. Disabil Rehabil. 2009;31(4):259–66.PubMedCrossRef
11.
go back to reference Buffart LM, Roebroeck ME, Rol M, Stam HJ, van den Berg-Emons RJ. Transition research group south-West Netherlands. Triad of physical activity, aerobic fitness and obesity in adolescents and young adults with myelomeningocele. J Rehabil Med. 2008;40(1):70–5.PubMedCrossRef Buffart LM, Roebroeck ME, Rol M, Stam HJ, van den Berg-Emons RJ. Transition research group south-West Netherlands. Triad of physical activity, aerobic fitness and obesity in adolescents and young adults with myelomeningocele. J Rehabil Med. 2008;40(1):70–5.PubMedCrossRef
12.
go back to reference Brehm MA, Kempen JC, van der Kooi AJ, et al. Age-related longitudinal changes in metabolic energy expenditure during walking in boys with duchenne muscular dystrophy. PLoS One. 2014;9(12):e115200.PubMedPubMedCentralCrossRef Brehm MA, Kempen JC, van der Kooi AJ, et al. Age-related longitudinal changes in metabolic energy expenditure during walking in boys with duchenne muscular dystrophy. PLoS One. 2014;9(12):e115200.PubMedPubMedCentralCrossRef
13.
go back to reference De Groot JF, Takken T, Schoenmakers MA, Vanhees L, Helders PJ. Limiting factors in peak oxygen uptake and the relationship with functional ambulation in ambulating children with spina bifida. Eur J Appl Physiol. 2008;104(4):657–65.PubMedCrossRef De Groot JF, Takken T, Schoenmakers MA, Vanhees L, Helders PJ. Limiting factors in peak oxygen uptake and the relationship with functional ambulation in ambulating children with spina bifida. Eur J Appl Physiol. 2008;104(4):657–65.PubMedCrossRef
14.
go back to reference Bloemen MA, de Groot JF, Backx FJ, Westerveld RA, Takken T. Arm cranking versus wheelchair propulsion for testing aerobic fitness in children with spina bifida who are wheelchair dependent. J Rehabil Med. 2015;47(5):432–7.PubMedCrossRef Bloemen MA, de Groot JF, Backx FJ, Westerveld RA, Takken T. Arm cranking versus wheelchair propulsion for testing aerobic fitness in children with spina bifida who are wheelchair dependent. J Rehabil Med. 2015;47(5):432–7.PubMedCrossRef
15.
go back to reference Bloemen MA, Takken T, Backx FJ, Vos M, Kruitwagen CL, de Groot JF. Validity and reliability of skill-related fitness tests for wheelchair-using youth with spina bifida. Arch Phys Med Rehabil. 2017;98(6):1097–103.PubMedCrossRef Bloemen MA, Takken T, Backx FJ, Vos M, Kruitwagen CL, de Groot JF. Validity and reliability of skill-related fitness tests for wheelchair-using youth with spina bifida. Arch Phys Med Rehabil. 2017;98(6):1097–103.PubMedCrossRef
16.
go back to reference Bloemen MAT, de Groot JF, Backx FJG, Benner J, Kruitwagen CLJJ, Takken T. The wheelchair shuttle test for assessing aerobic fitness in youth with spina bifida; a validity and reliability study. Phys Ther. 2017;97(10):1020–9.PubMedPubMedCentralCrossRef Bloemen MAT, de Groot JF, Backx FJG, Benner J, Kruitwagen CLJJ, Takken T. The wheelchair shuttle test for assessing aerobic fitness in youth with spina bifida; a validity and reliability study. Phys Ther. 2017;97(10):1020–9.PubMedPubMedCentralCrossRef
17.
go back to reference Dosa NP, Foley JT, Eckrich M, Woodall-Ruff D, Liptak GS. Obesity across the lifespan among persons with spina bifida. Disabil Rehabil. 2009;31(11):914–20.PubMedCrossRef Dosa NP, Foley JT, Eckrich M, Woodall-Ruff D, Liptak GS. Obesity across the lifespan among persons with spina bifida. Disabil Rehabil. 2009;31(11):914–20.PubMedCrossRef
18.
go back to reference Bussmann JB, Martens WL, Tulen JH, Schasfoort FC, van den Berg-Emons HJ, Stam HJ. Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav Res Methods Instrum Comput. 2001;33(3):349–56.PubMedCrossRef Bussmann JB, Martens WL, Tulen JH, Schasfoort FC, van den Berg-Emons HJ, Stam HJ. Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav Res Methods Instrum Comput. 2001;33(3):349–56.PubMedCrossRef
19.
go back to reference Nooijen CF, de Groot JF, Stam HJ, van den Berg-Emons RJ, Bussmann HB. Fit for the Future Consortium. Validation of an activity monitor for children who are partly or completely wheelchair-dependent. J Neuroeng Rehabil. 2015;12:11.PubMedPubMedCentralCrossRef Nooijen CF, de Groot JF, Stam HJ, van den Berg-Emons RJ, Bussmann HB. Fit for the Future Consortium. Validation of an activity monitor for children who are partly or completely wheelchair-dependent. J Neuroeng Rehabil. 2015;12:11.PubMedPubMedCentralCrossRef
20.
go back to reference Postma K, van den Berg-Emons HJ, Bussmann JB, Sluis TA, Bergen MP, Stam HJ. Validity of the detection of wheelchair propulsion as measured with an activity monitor in patients with spinal cord injury. Spinal Cord. 2005;43(9):550–7.PubMedCrossRef Postma K, van den Berg-Emons HJ, Bussmann JB, Sluis TA, Bergen MP, Stam HJ. Validity of the detection of wheelchair propulsion as measured with an activity monitor in patients with spinal cord injury. Spinal Cord. 2005;43(9):550–7.PubMedCrossRef
21.
go back to reference Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ. Reliability and validity of the combined heart rate and movement sensor actiheart. Eur J Clin Nutr. 2005;59(4):561–70.PubMedCrossRef Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ. Reliability and validity of the combined heart rate and movement sensor actiheart. Eur J Clin Nutr. 2005;59(4):561–70.PubMedCrossRef
22.
go back to reference White DK, Wagenaar RC, Del Olmo ME, Ellis TD. Test-retest reliability of 24 hours of activity monitoring in individuals with parkinson’s disease in home and community. Neurorehabil Neural Repair. 2007;21(4):327–40.PubMedCrossRef White DK, Wagenaar RC, Del Olmo ME, Ellis TD. Test-retest reliability of 24 hours of activity monitoring in individuals with parkinson’s disease in home and community. Neurorehabil Neural Repair. 2007;21(4):327–40.PubMedCrossRef
23.
go back to reference Karvonen MJ, Kentala E, Mustalo O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 1957;35(3):307–15.PubMed Karvonen MJ, Kentala E, Mustalo O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 1957;35(3):307–15.PubMed
24.
go back to reference Balemans AC, van Wely L, Middelweerd A, van den Noort J, Becher JG, Dallmeijer AJ. Daily stride rate activity and heart rate response in children with cerebral palsy. J Rehabil Med. 2014;46(1):45–50.PubMedCrossRef Balemans AC, van Wely L, Middelweerd A, van den Noort J, Becher JG, Dallmeijer AJ. Daily stride rate activity and heart rate response in children with cerebral palsy. J Rehabil Med. 2014;46(1):45–50.PubMedCrossRef
25.
go back to reference Garber CE, Blissmer B, Deschenes MR, et al. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRef Garber CE, Blissmer B, Deschenes MR, et al. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRef
26.
go back to reference Nooijen CF, Slaman J, Stam HJ, Roebroeck ME, Berg-Emons RJ. Learn2Move Research Group. Inactive and sedentary lifestyles amongst ambulatory adolescents and young adults with cerebral palsy. J Neuroeng Rehabil. 2014;11:49.PubMedPubMedCentralCrossRef Nooijen CF, Slaman J, Stam HJ, Roebroeck ME, Berg-Emons RJ. Learn2Move Research Group. Inactive and sedentary lifestyles amongst ambulatory adolescents and young adults with cerebral palsy. J Neuroeng Rehabil. 2014;11:49.PubMedPubMedCentralCrossRef
27.
go back to reference Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.PubMedCrossRef Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.PubMedCrossRef
28.
go back to reference Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.PubMedCrossRef Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.PubMedCrossRef
29.
go back to reference Bloemen MA, Backx FJ, Takken T, et al. Factors associated with physical activity in children and adolescents with a physical disability: a systematic review. Dev Med Child Neurol. 2015;57(2):137–48.PubMedCrossRef Bloemen MA, Backx FJ, Takken T, et al. Factors associated with physical activity in children and adolescents with a physical disability: a systematic review. Dev Med Child Neurol. 2015;57(2):137–48.PubMedCrossRef
30.
go back to reference Bloemen MA, Verschuren O, van Mechelen C, et al. Personal and environmental factors to consider when aiming to improve participation in physical activity in children with spina bifida: A qualitative study. BMC Neurol. 2015;15:11.PubMedPubMedCentralCrossRef Bloemen MA, Verschuren O, van Mechelen C, et al. Personal and environmental factors to consider when aiming to improve participation in physical activity in children with spina bifida: A qualitative study. BMC Neurol. 2015;15:11.PubMedPubMedCentralCrossRef
31.
go back to reference Bloemen MAT, Van Wely L, Mollema J, Dallmeijer A, de Groot JF. Evidence for increasing physical activity in children with physical disability: a systematic review. Dev Med Child Neurol. 2017;59(10):1004–10.PubMedCrossRef Bloemen MAT, Van Wely L, Mollema J, Dallmeijer A, de Groot JF. Evidence for increasing physical activity in children with physical disability: a systematic review. Dev Med Child Neurol. 2017;59(10):1004–10.PubMedCrossRef
32.
go back to reference Montoye AH, Moore RW, Bowles HR, Korycinski R, Pfeiffer KA. Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors. Br J Sports Med. 2016;52(23):1507–16.PubMedCrossRef Montoye AH, Moore RW, Bowles HR, Korycinski R, Pfeiffer KA. Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors. Br J Sports Med. 2016;52(23):1507–16.PubMedCrossRef
Metadata
Title
Physical activity in wheelchair-using youth with spina bifida: an observational study
Authors
Manon A. T. Bloemen
Rita J. G. van den Berg-Emons
Matthijs Tuijt
Carla F. J. Nooijen
Tim Takken
Frank J. G. Backx
Marleen Vos
Janke F. de Groot
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0464-x

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue