Skip to main content
Top
Published in: Neuroinformatics 3/2014

01-07-2014 | Original Article

SPIN: A Method of Skeleton-Based Polarity Identification for Neurons

Authors: Yi-Hsuan Lee, Yen-Nan Lin, Chao-Chun Chuang, Chung-Chuan Lo

Published in: Neuroinformatics | Issue 3/2014

Login to get access

Abstract

Directional signal transmission is essential for neural circuit function and thus for connectomic analysis. The directions of signal flow can be obtained by experimentally identifying neuronal polarity (axons or dendrites). However, the experimental techniques are not applicable to existing neuronal databases in which polarity information is not available. To address the issue, we proposed SPIN: a method of Skeleton-based Polarity Identification for Neurons. SPIN was designed to work with large-scale neuronal databases in which tracing-line data are available. In SPIN, a classifier is first trained by neurons with known polarity in two steps: 1) identifying morphological features that most correlate with the polarity and 2) constructing a linear classifier by determining a discriminant axis (a specific combination of the features) and decision boundaries. Each polarity-undefined neuron is then divided into several morphological substructures (domains) and the corresponding polarities are determined using the classifier. Finally, the result is evaluated and warnings for potential errors are returned. We tested this method on fruitfly (Drosophila melanogaster) and blowfly (Calliphora vicina and Calliphora erythrocephala) unipolar neurons using data obtained from the Flycircuit and Neuromorpho databases, respectively. On average, the polarity of 84–92 % of the terminal points in each neuron could be correctly identified. An ideal performance with an accuracy between 93 and 98 % can be achieved if we fed SPIN with relatively “clean” data without artificial branches. Our result demonstrates that SPIN, as a computer-based semi-automatic method, provides quick and accurate polarity identification and is particularly suitable for analyzing large-scale data. We implemented SPIN in Matlab and released the codes under the GPLv3 license.
Appendix
Available only for authorised users
Literature
go back to reference Borst, A., & Haag, J. (1996). The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. Journal of Computational Neuroscience, 3(4), 313–336. doi:10.1007/BF00161091.PubMedCrossRef Borst, A., & Haag, J. (1996). The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. Journal of Computational Neuroscience, 3(4), 313–336. doi:10.​1007/​BF00161091.PubMedCrossRef
go back to reference Brown, K. M., Barrionuevo, G., Canty, A. J., Paola, V., Hirsch, J. A., Jefferis, G. S. X. E., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157. doi:10.1007/s12021-010-9095-5.PubMedCrossRef Brown, K. M., Barrionuevo, G., Canty, A. J., Paola, V., Hirsch, J. A., Jefferis, G. S. X. E., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157. doi:10.​1007/​s12021-010-9095-5.PubMedCrossRef
go back to reference Campagne, M. V. L., Oestreicher, A. B., Henegouwen, P. M. P. V. B. E., & Gispen, W. H. (1990). Ultrastructural double localization of B-50/GAP43 and synaptophysin (p38) in the neonatal and adult rat hippocampus. Journal of Neurocytology, 19(6), 948–961. doi:10.1007/BF01186822.CrossRef Campagne, M. V. L., Oestreicher, A. B., Henegouwen, P. M. P. V. B. E., & Gispen, W. H. (1990). Ultrastructural double localization of B-50/GAP43 and synaptophysin (p38) in the neonatal and adult rat hippocampus. Journal of Neurocytology, 19(6), 948–961. doi:10.​1007/​BF01186822.CrossRef
go back to reference Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 13(4), 439–449. doi:10.1038/nn.2489.PubMedCentralPubMedCrossRef Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 13(4), 439–449. doi:10.​1038/​nn.​2489.PubMedCentralPubMedCrossRef
go back to reference Duchene, J., & Leclercq, S. (1988). An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6), 978–983. doi:10.1109/34.9121.CrossRef Duchene, J., & Leclercq, S. (1988). An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6), 978–983. doi:10.​1109/​34.​9121.CrossRef
go back to reference Fischbach, P. K.-F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell and Tissue Research, 258(3), 441–475. doi:10.1007/BF00218858.CrossRef Fischbach, P. K.-F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell and Tissue Research, 258(3), 441–475. doi:10.​1007/​BF00218858.CrossRef
go back to reference Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society, 14(5), 307–317.CrossRef Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society, 14(5), 307–317.CrossRef
go back to reference Hanesch, U., Fischbach, K.-F., & Heisenberg, M. (1989). Neuronal architecture of the central complex in Drosophila melanogaster. Cell and Tissue Research, 257(2), 343–366. doi:10.1007/BF00261838.CrossRef Hanesch, U., Fischbach, K.-F., & Heisenberg, M. (1989). Neuronal architecture of the central complex in Drosophila melanogaster. Cell and Tissue Research, 257(2), 343–366. doi:10.​1007/​BF00261838.CrossRef
go back to reference Heinze, S., & Homberg, U. (2008). Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. The Journal of Comparative Neurology, 511(4), 454–478. doi:10.1002/cne.21842.PubMedCrossRef Heinze, S., & Homberg, U. (2008). Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. The Journal of Comparative Neurology, 511(4), 454–478. doi:10.​1002/​cne.​21842.PubMedCrossRef
go back to reference Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B. J., Greenspan, R. J., et al. (2013a). A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Reports, 3(5), 1739–1753. doi:10.1016/j.celrep.2013.04.022.PubMedCrossRef Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B. J., Greenspan, R. J., et al. (2013a). A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Reports, 3(5), 1739–1753. doi:10.​1016/​j.​celrep.​2013.​04.​022.PubMedCrossRef
go back to reference Matus, A., Bernhardt, R., & Hugh-Jones, T. (1981). High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proceedings of the National Academy of Sciences of the United States of America, 78(5), 3010–3014.PubMedCentralPubMedCrossRef Matus, A., Bernhardt, R., & Hugh-Jones, T. (1981). High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proceedings of the National Academy of Sciences of the United States of America, 78(5), 3010–3014.PubMedCentralPubMedCrossRef
go back to reference Müller, M., Homberg, U., & Kühn, A. (1997). Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell and Tissue Research, 288(1), 159–176.PubMedCrossRef Müller, M., Homberg, U., & Kühn, A. (1997). Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell and Tissue Research, 288(1), 159–176.PubMedCrossRef
go back to reference Robinson, I. M., Ranjan, R., & Schwarz, T. L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature, 418(6895), 336–340. doi:10.1038/nature00915.PubMedCrossRef Robinson, I. M., Ranjan, R., & Schwarz, T. L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature, 418(6895), 336–340. doi:10.​1038/​nature00915.PubMedCrossRef
go back to reference Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876. doi:10.1038/nprot.2008.51.PubMedCrossRef Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876. doi:10.​1038/​nprot.​2008.​51.PubMedCrossRef
go back to reference Squire, L. R., Berg, D., Bloom, F., Lac, S. du, & Ghosh, A. (2008). Subcellular organization of the nervous system: organelles and their functions. In Fundamental Neuroscience (3rd ed., pp. 59–86). Amsterdam; Boston: Elsevier/Academic Press. Squire, L. R., Berg, D., Bloom, F., Lac, S. du, & Ghosh, A. (2008). Subcellular organization of the nervous system: organelles and their functions. In Fundamental Neuroscience (3rd ed., pp. 59–86). Amsterdam; Boston: Elsevier/Academic Press.
go back to reference Strausfeld, N. J., & Hausen, K. (1977). The resolution of neuronal assemblies after cobalt injection into neuropil. Proceedings of the Royal Society of London. Series B: Biological Sciences, 199(1136), 463–476. doi:10.1098/rspb.1977.0154.CrossRef Strausfeld, N. J., & Hausen, K. (1977). The resolution of neuronal assemblies after cobalt injection into neuropil. Proceedings of the Royal Society of London. Series B: Biological Sciences, 199(1136), 463–476. doi:10.​1098/​rspb.​1977.​0154.CrossRef
go back to reference Wang, T., & Liao, D. (2011). Neuronal morphology classification based on SVM. In Computer Science and Service System (CSSS), 2011 International Conference on (pp. 3344–3347). doi:10.1109/CSSS.2011.5972187. Wang, T., & Liao, D. (2011). Neuronal morphology classification based on SVM. In Computer Science and Service System (CSSS), 2011 International Conference on (pp. 3344–3347). doi:10.​1109/​CSSS.​2011.​5972187.
go back to reference White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056.CrossRef White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 314(1165), 1–340. doi:10.​1098/​rstb.​1986.​0056.CrossRef
Metadata
Title
SPIN: A Method of Skeleton-Based Polarity Identification for Neurons
Authors
Yi-Hsuan Lee
Yen-Nan Lin
Chao-Chun Chuang
Chung-Chuan Lo
Publication date
01-07-2014
Publisher
Springer US
Published in
Neuroinformatics / Issue 3/2014
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-014-9225-6

Other articles of this Issue 3/2014

Neuroinformatics 3/2014 Go to the issue