Skip to main content
Top
Published in: International Journal of Legal Medicine 1/2021

01-01-2021 | Original Article

Species identification of semen stains by ATR-FTIR spectroscopy

Authors: Xin Wei, Kai Yu, Di Wu, Ping Huang, Qinru Sun, Zhenyuan Wang

Published in: International Journal of Legal Medicine | Issue 1/2021

Login to get access

Abstract

Semen stains are the most important biological evidence when identifying the aggressor in sexual assault cases. Current detecting assays of semen stains species identification were not confirmative enough. In this study, we investigated the potential of species identification of semen stains by using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy combined with advanced chemometrics methods. The effect of substrates types and time since deposition (TSD) were considered in the study. A partial least squares–discriminant analysis (PLS-DA) classification model was established which demonstrated complete separation between human and other species (rabbit, dog, boar, bull, and ram). Validation was conducted which showed prediction abilities with 100% accuracy. Additionally, we found species identification could be achieved without sperm cells which proved ability of spectroscopic methods detecting the semen samples from the case of azoospermia. This work provides a powerful and practical tool for species identification of semen stains in real forensic casework.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mastiaglio M, Shaw A (2010) Crime scene to court: the essentials of forensic science. 569 Mastiaglio M, Shaw A (2010) Crime scene to court: the essentials of forensic science. 569
2.
go back to reference Diamandis EP, Yu H (1995) New biological functions of prostate-specific antigen. J Clin Endocrinol Metab 80:1515–1517CrossRef Diamandis EP, Yu H (1995) New biological functions of prostate-specific antigen. J Clin Endocrinol Metab 80:1515–1517CrossRef
3.
go back to reference Smith MR, Biggar S, Hussain M (1995) Prostate-specific antigen messenger RNA is expressed in non-prostate cells: implications for detection of micrometastases. Cancer Res 55:2640–2644PubMed Smith MR, Biggar S, Hussain M (1995) Prostate-specific antigen messenger RNA is expressed in non-prostate cells: implications for detection of micrometastases. Cancer Res 55:2640–2644PubMed
4.
go back to reference Wernert N, Albrech M, Sesterhenn I, Goebbels R, Bonkhoff H, Seitz G, Inniger R, Remberger K (1992) The ‘female prostate’: location, morphology, immunohistochemical characteristics and significance. Eur Urol 22:64–69CrossRef Wernert N, Albrech M, Sesterhenn I, Goebbels R, Bonkhoff H, Seitz G, Inniger R, Remberger K (1992) The ‘female prostate’: location, morphology, immunohistochemical characteristics and significance. Eur Urol 22:64–69CrossRef
5.
go back to reference Mashkoor FC, Al-Asadi JN, Al-Naama LM (2013) Serum level of prostate-specific antigen (PSA) in women with breast cancer. Cancer Epidemiol 37:613–618CrossRef Mashkoor FC, Al-Asadi JN, Al-Naama LM (2013) Serum level of prostate-specific antigen (PSA) in women with breast cancer. Cancer Epidemiol 37:613–618CrossRef
6.
go back to reference Aumüller G, Seitz J, Lilja H, Abrahamsson PA, von Kammer HD, Scheit KH (1990) Species- and organ-specificity of secretory proteins derived from human prostate and seminal vesicles. Prostate 17:31–40CrossRef Aumüller G, Seitz J, Lilja H, Abrahamsson PA, von Kammer HD, Scheit KH (1990) Species- and organ-specificity of secretory proteins derived from human prostate and seminal vesicles. Prostate 17:31–40CrossRef
7.
go back to reference Miteva R, Zapryanova D, Fasulkov I, Yotov S, Mircheva T (2010) Investigations on acid phosphatase activity in the seminal plasma of humans and animals. Trakia J Sci 8:20–23 Miteva R, Zapryanova D, Fasulkov I, Yotov S, Mircheva T (2010) Investigations on acid phosphatase activity in the seminal plasma of humans and animals. Trakia J Sci 8:20–23
8.
go back to reference Elkins KM (2011) Rapid presumptive ‘fingerprinting’ of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci 56:1580–1587CrossRef Elkins KM (2011) Rapid presumptive ‘fingerprinting’ of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci 56:1580–1587CrossRef
9.
go back to reference Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17CrossRef Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17CrossRef
10.
go back to reference Yang H, Zhou B, Deng H, Prinz M, Siegel D (2013) Body fluid identification by mass spectrometry. Int J Legal Med 127:1065–1077CrossRef Yang H, Zhou B, Deng H, Prinz M, Siegel D (2013) Body fluid identification by mass spectrometry. Int J Legal Med 127:1065–1077CrossRef
11.
go back to reference Zapata F, Fernández de la Ossa MÁ, García-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC - Trends Anal Chem 64:53–63CrossRef Zapata F, Fernández de la Ossa MÁ, García-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC - Trends Anal Chem 64:53–63CrossRef
12.
go back to reference Gebel E (2009) Species in a snap: Raman analysis of blood. Anal Chem 81:7862–7862CrossRef Gebel E (2009) Species in a snap: Raman analysis of blood. Anal Chem 81:7862–7862CrossRef
13.
go back to reference McLaughlin G, Doty KC, Lednev IK (2014) Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci Int 238:91–95CrossRef McLaughlin G, Doty KC, Lednev IK (2014) Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci Int 238:91–95CrossRef
14.
go back to reference McLaughlin G, Doty KC, Lednev IK (2014) Raman spectroscopy of blood for species identification. Anal Chem 86:11628–11633CrossRef McLaughlin G, Doty KC, Lednev IK (2014) Raman spectroscopy of blood for species identification. Anal Chem 86:11628–11633CrossRef
15.
go back to reference Doty KC, Lednev IK (2018) Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci 4:862–867CrossRef Doty KC, Lednev IK (2018) Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci 4:862–867CrossRef
16.
go back to reference Doty KC, Mclaughlin G, Lednev IK (2016) A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408:3993–4001CrossRef Doty KC, Mclaughlin G, Lednev IK (2016) A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408:3993–4001CrossRef
17.
go back to reference Wang Q, Li W, Liu R, Zhang K, Zhang H, Fan S, Wang Z (2019) Human and non-human bone identification using FTIR spectroscopy. Int J Legal Med 133:269–276CrossRef Wang Q, Li W, Liu R, Zhang K, Zhang H, Fan S, Wang Z (2019) Human and non-human bone identification using FTIR spectroscopy. Int J Legal Med 133:269–276CrossRef
18.
go back to reference Lin H, Luo Y, Sun Q, Zhang J, Tuo Y, Zhang Z, Wang L, Deng K, Chen Y, Huang P, Wang Z (2018) Identification of pulmonary edema in forensic autopsy cases of sudden cardiac death using Fourier transform infrared microspectroscopy: a pilot study. Anal Chem 90:2708–2715CrossRef Lin H, Luo Y, Sun Q, Zhang J, Tuo Y, Zhang Z, Wang L, Deng K, Chen Y, Huang P, Wang Z (2018) Identification of pulmonary edema in forensic autopsy cases of sudden cardiac death using Fourier transform infrared microspectroscopy: a pilot study. Anal Chem 90:2708–2715CrossRef
22.
go back to reference Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5:1748–1760CrossRef Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5:1748–1760CrossRef
23.
go back to reference Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777CrossRef Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777CrossRef
24.
go back to reference Li J, Hibbert DB, Fuller S (2007) Numerical methods for comparing fresh and weathered oils by their FTIR spectra. Analyst 132:792–800CrossRef Li J, Hibbert DB, Fuller S (2007) Numerical methods for comparing fresh and weathered oils by their FTIR spectra. Analyst 132:792–800CrossRef
25.
go back to reference Brereton RG (2009) Chemometrics for pattern recognition. Wiley Brereton RG (2009) Chemometrics for pattern recognition. Wiley
26.
go back to reference Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89CrossRef Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89CrossRef
27.
go back to reference Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798CrossRef Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798CrossRef
28.
go back to reference Orphanou CM (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16CrossRef Orphanou CM (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16CrossRef
29.
go back to reference Olsztyńska-Janus S, Szymborska-Małek K, Gąsior-Głogowska M, Walski T, Komorowska M, Witkiewicz W, Pezowicz C, Kobielarz M, Szotek S (2012) Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta Bioeng Biomech 14:101–115PubMed Olsztyńska-Janus S, Szymborska-Małek K, Gąsior-Głogowska M, Walski T, Komorowska M, Witkiewicz W, Pezowicz C, Kobielarz M, Szotek S (2012) Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy. Acta Bioeng Biomech 14:101–115PubMed
30.
go back to reference Movasaghi Z, Rehman S, ur Rehman I (2008) Applied spectroscopy reviews Fourier transform infrared (FTIR) spectroscopy of biological tissues Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef Movasaghi Z, Rehman S, ur Rehman I (2008) Applied spectroscopy reviews Fourier transform infrared (FTIR) spectroscopy of biological tissues Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef
31.
go back to reference Allard JE, Baird A, Davidson G, Jones S, Lewis J, McKenna L, Weston C, Scrimger D, Teppett G (2007) A comparison of methods used in the UK and Ireland for the extraction and detection of semen on swabs and cloth samples. Sci Justice 47:160–167CrossRef Allard JE, Baird A, Davidson G, Jones S, Lewis J, McKenna L, Weston C, Scrimger D, Teppett G (2007) A comparison of methods used in the UK and Ireland for the extraction and detection of semen on swabs and cloth samples. Sci Justice 47:160–167CrossRef
32.
go back to reference Mann T (1946) Studies on the metabolism of semen: 3. Fructose as a normal constituent of seminal plasma Site of formation and function of fructose in semen. Biochem J 40(481) Mann T (1946) Studies on the metabolism of semen: 3. Fructose as a normal constituent of seminal plasma Site of formation and function of fructose in semen. Biochem J 40(481)
33.
go back to reference Killian GJ, Amann RP (1974) Reproductive capacity of dairy bulls. X. Changes in chemical components and immunoelectrophoretic characteristics at seminal plasma before and after puberty. J Dairy Sci 57:703–706CrossRef Killian GJ, Amann RP (1974) Reproductive capacity of dairy bulls. X. Changes in chemical components and immunoelectrophoretic characteristics at seminal plasma before and after puberty. J Dairy Sci 57:703–706CrossRef
34.
go back to reference Old J, Schweers BA, Boonlayangoor PW, Fischer B, Miller KWP, Reich K (2012) Developmental validation of RSID™-Semen: a lateral flow Immunochromatographic strip test for the forensic detection of human semen. J Forensic Sci 57:489–499CrossRef Old J, Schweers BA, Boonlayangoor PW, Fischer B, Miller KWP, Reich K (2012) Developmental validation of RSID™-Semen: a lateral flow Immunochromatographic strip test for the forensic detection of human semen. J Forensic Sci 57:489–499CrossRef
35.
go back to reference Boward ES, Wilson SL (2013) A comparison of ABAcard® p30 and RSID™-Semen test kits for forensic semen identification. J Forensic Legal Med 20:1126–1130CrossRef Boward ES, Wilson SL (2013) A comparison of ABAcard® p30 and RSID™-Semen test kits for forensic semen identification. J Forensic Legal Med 20:1126–1130CrossRef
36.
go back to reference Organization, W. H. (2010) WHO laboratory manual for the examination and processing of human semen Organization, W. H. (2010) WHO laboratory manual for the examination and processing of human semen
Metadata
Title
Species identification of semen stains by ATR-FTIR spectroscopy
Authors
Xin Wei
Kai Yu
Di Wu
Ping Huang
Qinru Sun
Zhenyuan Wang
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Legal Medicine / Issue 1/2021
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-020-02367-0

Other articles of this Issue 1/2021

International Journal of Legal Medicine 1/2021 Go to the issue