Skip to main content
Top

19-03-2024 | Spastic Paraplegia | Original Article

Whole exome sequencing in Serbian patients with hereditary spastic paraplegia

Authors: Marija Brankovic, Vukan Ivanovic, Ivana Basta, Rin Khang, Eugene Lee, Zorica Stevic, Branislav Ralic, Radoje Tubic, GoHun Seo, Vladana Markovic, Ivo Bozovic, Marina Svetel, Ana Marjanovic, Nikola Veselinovic, Sarlota Mesaros, Milena Jankovic, Dusanka Savic-Pavicevic, Zita Jovin, Ivana Novakovic, Hane Lee, Stojan Peric

Published in: Neurogenetics

Login to get access

Abstract  

Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1ZFYVE26RNF170CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPASTSPG11WASCH5KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.
Literature
1.
go back to reference de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks. Cerebellum 16(2):525–551PubMedCrossRef de Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks. Cerebellum 16(2):525–551PubMedCrossRef
2.
go back to reference Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef
3.
go back to reference Schüle R, Wiethoff S, Martus P et al (2016) Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann Neurol 79(4):646–658PubMedCrossRef Schüle R, Wiethoff S, Martus P et al (2016) Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann Neurol 79(4):646–658PubMedCrossRef
4.
5.
go back to reference Darios F, Coarelli G, Durr A (2022) Genetics in hereditary spastic paraplegias: Essential but not enough. Curr Opin Neurobiol 72:8–14PubMedCrossRef Darios F, Coarelli G, Durr A (2022) Genetics in hereditary spastic paraplegias: Essential but not enough. Curr Opin Neurobiol 72:8–14PubMedCrossRef
6.
go back to reference Meyyazhagan A, Kuchi Bhotla H, Pappuswamy M, Orlacchio A (2022) The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int J Mol Sci 23(14):7665 (Published 2022 Jul 11)PubMedPubMedCentralCrossRef Meyyazhagan A, Kuchi Bhotla H, Pappuswamy M, Orlacchio A (2022) The Puzzle of Hereditary Spastic Paraplegia: From Epidemiology to Treatment. Int J Mol Sci 23(14):7665 (Published 2022 Jul 11)PubMedPubMedCentralCrossRef
7.
go back to reference Iqbal Z, Rydning SL, Wedding IM et al (2017) Correction: Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One 12(10):e0186571 (Published 2017 Oct 12)PubMedPubMedCentralCrossRef Iqbal Z, Rydning SL, Wedding IM et al (2017) Correction: Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One 12(10):e0186571 (Published 2017 Oct 12)PubMedPubMedCentralCrossRef
8.
go back to reference Méreaux JL, Banneau G, Papin M et al (2022) Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 145(3):1029–1037PubMedCrossRef Méreaux JL, Banneau G, Papin M et al (2022) Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 145(3):1029–1037PubMedCrossRef
9.
go back to reference Perić S, Marković V, Candayan A et al (2022) Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia. Cells 11(18):2804 (Published 2022 Sep 8)PubMedPubMedCentralCrossRef Perić S, Marković V, Candayan A et al (2022) Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia. Cells 11(18):2804 (Published 2022 Sep 8)PubMedPubMedCentralCrossRef
10.
go back to reference Hedera P (2000) Hereditary Spastic Paraplegia Overview. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA) Hedera P (2000) Hereditary Spastic Paraplegia Overview. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)
11.
go back to reference Seo GH, Kim T, Choi IH et al (2020) Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet 98(6):562–570PubMedPubMedCentralCrossRef Seo GH, Kim T, Choi IH et al (2020) Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet 98(6):562–570PubMedPubMedCentralCrossRef
12.
go back to reference Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581(7809):434–443 ([published correction appears in Nature. 2021 Feb;590(7846):E53] [published correction appears in Nature. 2021 Sep;597(7874):E3-E4])ADSPubMedPubMedCentralCrossRef Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581(7809):434–443 ([published correction appears in Nature. 2021 Feb;590(7846):E53] [published correction appears in Nature. 2021 Sep;597(7874):E3-E4])ADSPubMedPubMedCentralCrossRef
13.
go back to reference Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424PubMedPubMedCentralCrossRef
14.
go back to reference Köhler S, Gargano M, Matentzoglu N et al (2021) The Human Phenotype Ontology in 2021. Nucleic Acids Res 49(D1):D1207–D1217PubMedCrossRef Köhler S, Gargano M, Matentzoglu N et al (2021) The Human Phenotype Ontology in 2021. Nucleic Acids Res 49(D1):D1207–D1217PubMedCrossRef
15.
go back to reference Köhler S, Schulz MH, Krawitz P et al (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464PubMedPubMedCentralCrossRef Köhler S, Schulz MH, Krawitz P et al (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464PubMedPubMedCentralCrossRef
17.
go back to reference D’Amore A, Tessa A, Casali C et al (2018) Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study. Front Neurol 9:981 (Published 2018 Dec 4)PubMedPubMedCentralCrossRef D’Amore A, Tessa A, Casali C et al (2018) Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study. Front Neurol 9:981 (Published 2018 Dec 4)PubMedPubMedCentralCrossRef
18.
go back to reference Cui F, Sun L, Qiao J et al (2020) Genetic mutation analysis of hereditary spastic paraplegia: A retrospective study. Medicine (Baltimore) 99(23):e20193PubMedCrossRef Cui F, Sun L, Qiao J et al (2020) Genetic mutation analysis of hereditary spastic paraplegia: A retrospective study. Medicine (Baltimore) 99(23):e20193PubMedCrossRef
19.
go back to reference Valencia CA, Husami A, Holle J et al (2015) Clinical Impact and Cost-Effectiveness of Whole Exome Sequencing as a Diagnostic Tool: A Pediatric Center’s Experience. Front Pediatr 3:67 (Published 2015 Aug 3)PubMedPubMedCentralCrossRef Valencia CA, Husami A, Holle J et al (2015) Clinical Impact and Cost-Effectiveness of Whole Exome Sequencing as a Diagnostic Tool: A Pediatric Center’s Experience. Front Pediatr 3:67 (Published 2015 Aug 3)PubMedPubMedCentralCrossRef
20.
go back to reference Zhao M, Chen YJ, Wang MW et al (2019) Genetic and Clinical Profile of Chinese Patients with Autosomal Dominant Spastic Paraplegia. Mol Diagn Ther 23(6):781–789PubMedCrossRef Zhao M, Chen YJ, Wang MW et al (2019) Genetic and Clinical Profile of Chinese Patients with Autosomal Dominant Spastic Paraplegia. Mol Diagn Ther 23(6):781–789PubMedCrossRef
21.
go back to reference Schiavoni S, Spagnoli C, Rizzi S et al (2020) Paediatric-onset hereditary spastic paraplegias: a retrospective cohort study. Dev Med Child Neurol 62(9):1068–1074PubMedCrossRef Schiavoni S, Spagnoli C, Rizzi S et al (2020) Paediatric-onset hereditary spastic paraplegias: a retrospective cohort study. Dev Med Child Neurol 62(9):1068–1074PubMedCrossRef
22.
go back to reference Mandelker D, Schmidt RJ, Ankala A et al (2016) Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 18(12):1282–1289PubMedCrossRef Mandelker D, Schmidt RJ, Ankala A et al (2016) Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 18(12):1282–1289PubMedCrossRef
23.
go back to reference Cummings BB, Marshall JL, Tukiainen T et al (2017) Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 9(386):eaal5209PubMedPubMedCentralCrossRef Cummings BB, Marshall JL, Tukiainen T et al (2017) Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 9(386):eaal5209PubMedPubMedCentralCrossRef
25.
go back to reference Frésard L, Smail C, Ferraro NM et al (2019) Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med 25(6):911–919PubMedPubMedCentralCrossRef Frésard L, Smail C, Ferraro NM et al (2019) Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med 25(6):911–919PubMedPubMedCentralCrossRef
26.
go back to reference Lee H, Huang AY, Wang LK et al (2020) Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med 22(3):490–499PubMedCrossRef Lee H, Huang AY, Wang LK et al (2020) Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med 22(3):490–499PubMedCrossRef
28.
go back to reference Yang JO, Yoon JY, Sung DH et al (2021) The emerging genetic diversity of hereditary spastic paraplegia in Korean patients. Genomics 113(6):4136–4148PubMedCrossRef Yang JO, Yoon JY, Sung DH et al (2021) The emerging genetic diversity of hereditary spastic paraplegia in Korean patients. Genomics 113(6):4136–4148PubMedCrossRef
29.
go back to reference Fussiger H, Pereira BLDS, Padilha JPD et al (2023) Copy number variations in SPAST and ATL1 are rare among Brazilians. Clin Genet 103(5):580–584PubMedCrossRef Fussiger H, Pereira BLDS, Padilha JPD et al (2023) Copy number variations in SPAST and ATL1 are rare among Brazilians. Clin Genet 103(5):580–584PubMedCrossRef
30.
go back to reference Drousiotou A, DiMeo I, Mineri R, Georgiou T, Stylianidou G, Tiranti V (2011) Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches. Clin Genet 79(4):385–390PubMedCrossRef Drousiotou A, DiMeo I, Mineri R, Georgiou T, Stylianidou G, Tiranti V (2011) Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches. Clin Genet 79(4):385–390PubMedCrossRef
31.
go back to reference Kitzler TM, Gupta IR, Osterman B et al (2019) Acute and Chronic Management in an Atypical Case of Ethylmalonic Encephalopathy. JIMD Rep 45:57–63PubMedCrossRef Kitzler TM, Gupta IR, Osterman B et al (2019) Acute and Chronic Management in an Atypical Case of Ethylmalonic Encephalopathy. JIMD Rep 45:57–63PubMedCrossRef
32.
go back to reference Pigeon N, Campeau PM, Cyr D, Lemieux B, Clarke JT (2009) Clinical heterogeneity in ethylmalonic encephalopathy. J Child Neurol 24(8):991–996PubMedCrossRef Pigeon N, Campeau PM, Cyr D, Lemieux B, Clarke JT (2009) Clinical heterogeneity in ethylmalonic encephalopathy. J Child Neurol 24(8):991–996PubMedCrossRef
33.
go back to reference Müller vom Hagen J, Karle KN, Schüle R, Krägeloh-Mann I, Schöls L (2014) Leukodystrophies underlying cryptic spastic paraparesis: frequency and phenotype in 76 patients. Eur J Neurol 21(7):983–988PubMedCrossRef Müller vom Hagen J, Karle KN, Schüle R, Krägeloh-Mann I, Schöls L (2014) Leukodystrophies underlying cryptic spastic paraparesis: frequency and phenotype in 76 patients. Eur J Neurol 21(7):983–988PubMedCrossRef
34.
go back to reference Hershkovitz E, Narkis G, Shorer Z et al (2002) Cerebral X-linked adrenoleukodystrophy in a girl with Xq27-Ter deletion. Ann Neurol 52(2):234–237PubMedCrossRef Hershkovitz E, Narkis G, Shorer Z et al (2002) Cerebral X-linked adrenoleukodystrophy in a girl with Xq27-Ter deletion. Ann Neurol 52(2):234–237PubMedCrossRef
35.
go back to reference Jung HH, Wimplinger I, Jung S, Landau K, Gal A, Heppner FL (2007) Phenotypes of female adrenoleukodystrophy. Neurology 68(12):960–961PubMedCrossRef Jung HH, Wimplinger I, Jung S, Landau K, Gal A, Heppner FL (2007) Phenotypes of female adrenoleukodystrophy. Neurology 68(12):960–961PubMedCrossRef
36.
go back to reference Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(Pt 8):1485–1508PubMedCrossRef Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120(Pt 8):1485–1508PubMedCrossRef
37.
go back to reference Engelen M, van Ballegoij WJC, Mallack EJ et al (2022) International Recommendations for the Diagnosis and Management of Patients With Adrenoleukodystrophy: A Consensus-Based Approach. Neurology 99(21):940–951PubMedPubMedCentralCrossRef Engelen M, van Ballegoij WJC, Mallack EJ et al (2022) International Recommendations for the Diagnosis and Management of Patients With Adrenoleukodystrophy: A Consensus-Based Approach. Neurology 99(21):940–951PubMedPubMedCentralCrossRef
38.
go back to reference Olgiati S, Doğu O, Tufekcioglu Z et al (2017) The p.Thr11Met mutation in c19orf12 is frequent among adult Turkish patients with MPAN. Parkinsonism Relat Disord. 39:64–70PubMedCrossRef Olgiati S, Doğu O, Tufekcioglu Z et al (2017) The p.Thr11Met mutation in c19orf12 is frequent among adult Turkish patients with MPAN. Parkinsonism Relat Disord. 39:64–70PubMedCrossRef
39.
go back to reference Fraser S, Koenig M, Farach L, Mancias P, Mowrey K (2021) A De Novo case of autosomal dominant mitochondrial membrane protein-associated neurodegeneration. Mol Genet Genomic Med 9(7):e1706PubMedPubMedCentralCrossRef Fraser S, Koenig M, Farach L, Mancias P, Mowrey K (2021) A De Novo case of autosomal dominant mitochondrial membrane protein-associated neurodegeneration. Mol Genet Genomic Med 9(7):e1706PubMedPubMedCentralCrossRef
40.
go back to reference Rickman OJ, Salter CG, Gunning AC et al (2021) Dominant mitochondrial membrane protein-associated neurodegeneration (MPAN) variants cluster within a specific C19orf12 isoform. Parkinsonism Relat Disord 82:84–86PubMedCrossRef Rickman OJ, Salter CG, Gunning AC et al (2021) Dominant mitochondrial membrane protein-associated neurodegeneration (MPAN) variants cluster within a specific C19orf12 isoform. Parkinsonism Relat Disord 82:84–86PubMedCrossRef
41.
go back to reference Hartig MB, Iuso A, Haack T et al (2011) Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet 89(4):543–550PubMedPubMedCentralCrossRef Hartig MB, Iuso A, Haack T et al (2011) Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet 89(4):543–550PubMedPubMedCentralCrossRef
42.
go back to reference Hogarth P, Gregory A, Kruer MC et al (2013) New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 80(3):268–275PubMedPubMedCentralCrossRef Hogarth P, Gregory A, Kruer MC et al (2013) New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 80(3):268–275PubMedPubMedCentralCrossRef
43.
go back to reference Schulte EC, Claussen MC, Jochim A et al (2013) Mitochondrial membrane protein associated neurodegenration: a novel variant of neurodegeneration with brain iron accumulation. Mov Disord 28(2):224–227PubMedCrossRef Schulte EC, Claussen MC, Jochim A et al (2013) Mitochondrial membrane protein associated neurodegenration: a novel variant of neurodegeneration with brain iron accumulation. Mov Disord 28(2):224–227PubMedCrossRef
44.
go back to reference Selikhova M, Fedotova E, Wiethoff S et al (2017) A 30-year history of MPAN case from Russia. Clin Neurol Neurosurg 159:111–113PubMedCrossRef Selikhova M, Fedotova E, Wiethoff S et al (2017) A 30-year history of MPAN case from Russia. Clin Neurol Neurosurg 159:111–113PubMedCrossRef
45.
go back to reference Sparber P, Marakhonov A, Filatova A, Sharkova I, Skoblov M (2018) Novel case of neurodegeneration with brain iron accumulation 4 (NBIA4) caused by a pathogenic variant affecting splicing. Neurogenetics 19(4):257–260PubMedCrossRef Sparber P, Marakhonov A, Filatova A, Sharkova I, Skoblov M (2018) Novel case of neurodegeneration with brain iron accumulation 4 (NBIA4) caused by a pathogenic variant affecting splicing. Neurogenetics 19(4):257–260PubMedCrossRef
46.
go back to reference Gregory A, Lotia M, Jeong SY et al (2019) Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Mol Genet Genomic Med 7(7):e00736PubMedPubMedCentralCrossRef Gregory A, Lotia M, Jeong SY et al (2019) Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Mol Genet Genomic Med 7(7):e00736PubMedPubMedCentralCrossRef
47.
go back to reference Gregory A, Klopstock T, Kmiec T, Hogarth P, Hayflick SJ (2014) Mitochondrial Membrane Protein-Associated Neurodegeneration. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA) Gregory A, Klopstock T, Kmiec T, Hogarth P, Hayflick SJ (2014) Mitochondrial Membrane Protein-Associated Neurodegeneration. In: Adam MP, Feldman J, Mirzaa GM et al (eds) GeneReviews®. University of Washington, Seattle, Seattle (WA)
48.
go back to reference Sparber P, Krylova T, Repina S et al (2021) Retrospective analysis of 17 patients with mitochondrial membrane protein-associated neurodegeneration diagnosed in Russia. Parkinsonism Relat Disord 84:98–104PubMedCrossRef Sparber P, Krylova T, Repina S et al (2021) Retrospective analysis of 17 patients with mitochondrial membrane protein-associated neurodegeneration diagnosed in Russia. Parkinsonism Relat Disord 84:98–104PubMedCrossRef
49.
go back to reference Dursun U, Koroglu C, Kocasoy Orhan E, Ugur SA, Tolun A (2009) Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3–q25.1. Neurogenetics 10(4):325–331PubMedCrossRef Dursun U, Koroglu C, Kocasoy Orhan E, Ugur SA, Tolun A (2009) Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3–q25.1. Neurogenetics 10(4):325–331PubMedCrossRef
50.
go back to reference Novarino G, Fenstermaker AG, Zaki MS et al (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343(6170):506–511ADSPubMedPubMedCentralCrossRef Novarino G, Fenstermaker AG, Zaki MS et al (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343(6170):506–511ADSPubMedPubMedCentralCrossRef
51.
go back to reference Elsaid MF, Ibrahim K, Chalhoub N, Elsotouhy A, El Mudehki N, Abdel Aleem A (2017) NT5C2 novel splicing variant expands the phenotypic spectrum of Spastic Paraplegia (SPG45): case report of a new member of thin corpus callosum SPG-Subgroup. BMC Med Genet 18(1):33 (Published 2017 Mar 21)PubMedPubMedCentralCrossRef Elsaid MF, Ibrahim K, Chalhoub N, Elsotouhy A, El Mudehki N, Abdel Aleem A (2017) NT5C2 novel splicing variant expands the phenotypic spectrum of Spastic Paraplegia (SPG45): case report of a new member of thin corpus callosum SPG-Subgroup. BMC Med Genet 18(1):33 (Published 2017 Mar 21)PubMedPubMedCentralCrossRef
53.
go back to reference Arnoldi A, Crimella C, Tenderini E et al (2012) Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet 81(2):150–157PubMedCrossRef Arnoldi A, Crimella C, Tenderini E et al (2012) Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet 81(2):150–157PubMedCrossRef
54.
go back to reference Theuriet J, Pegat A, Leblanc P et al (2021) Phenoconversion from Spastic Paraplegia to ALS/FTD Associated with CYP7B1 Compound Heterozygous Mutations. Genes (Basel) 12(12):1876 (Published 2021 Nov 25)PubMedCrossRef Theuriet J, Pegat A, Leblanc P et al (2021) Phenoconversion from Spastic Paraplegia to ALS/FTD Associated with CYP7B1 Compound Heterozygous Mutations. Genes (Basel) 12(12):1876 (Published 2021 Nov 25)PubMedCrossRef
55.
go back to reference Goizet C, Boukhris A, Durr A et al (2009) CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain 132(Pt 6):1589–1600PubMedCrossRef Goizet C, Boukhris A, Durr A et al (2009) CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain 132(Pt 6):1589–1600PubMedCrossRef
56.
go back to reference Schlipf NA, Schüle R, Klimpe S et al (2011) Amplicon-based high-throughput pooled sequencing identifies mutations in CYP7B1 and SPG7 in sporadic spastic paraplegia patients. Clin Genet 80(2):148–160PubMedCrossRef Schlipf NA, Schüle R, Klimpe S et al (2011) Amplicon-based high-throughput pooled sequencing identifies mutations in CYP7B1 and SPG7 in sporadic spastic paraplegia patients. Clin Genet 80(2):148–160PubMedCrossRef
57.
go back to reference Kumar KR, Blair NF, Vandebona H et al (2013) Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol 260(10):2516–2522PubMedCrossRef Kumar KR, Blair NF, Vandebona H et al (2013) Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol 260(10):2516–2522PubMedCrossRef
58.
go back to reference Roos P, Svenstrup K, Danielsen ER, Thomsen C, Nielsen JE (2014) CYP7B1: novel mutations and magnetic resonance spectroscopy abnormalities in hereditary spastic paraplegia type 5A. Acta Neurol Scand 129(5):330–334PubMedCrossRef Roos P, Svenstrup K, Danielsen ER, Thomsen C, Nielsen JE (2014) CYP7B1: novel mutations and magnetic resonance spectroscopy abnormalities in hereditary spastic paraplegia type 5A. Acta Neurol Scand 129(5):330–334PubMedCrossRef
59.
go back to reference Goizet C, Boukhris A, Maltete D et al (2009) SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology 73(14):1111–1119PubMedCrossRef Goizet C, Boukhris A, Maltete D et al (2009) SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology 73(14):1111–1119PubMedCrossRef
Metadata
Title
Whole exome sequencing in Serbian patients with hereditary spastic paraplegia
Authors
Marija Brankovic
Vukan Ivanovic
Ivana Basta
Rin Khang
Eugene Lee
Zorica Stevic
Branislav Ralic
Radoje Tubic
GoHun Seo
Vladana Markovic
Ivo Bozovic
Marina Svetel
Ana Marjanovic
Nikola Veselinovic
Sarlota Mesaros
Milena Jankovic
Dusanka Savic-Pavicevic
Zita Jovin
Ivana Novakovic
Hane Lee
Stojan Peric
Publication date
19-03-2024
Publisher
Springer Berlin Heidelberg
Published in
Neurogenetics
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-024-00755-x