Skip to main content
Top
Published in: Cellular Oncology 1/2019

01-02-2019 | Original Paper

SOX3 can promote the malignant behavior of glioblastoma cells

Authors: Jelena Marjanovic Vicentic, Danijela Drakulic, Idoia Garcia, Vladanka Vukovic, Paula Aldaz, Nela Puskas, Igor Nikolic, Goran Tasic, Savo Raicevic, Laura Garros-Regulez, Nicolas Sampron, Michael J. Atkinson, Natasa Anastasov, Ander Matheu, Milena Stevanovic

Published in: Cellular Oncology | Issue 1/2019

Login to get access

Abstract

Purpose

Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma.

Methods

SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively.

Results

Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells.

Conclusion

From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.
Literature
1.
go back to reference P. Kleihues, D.N. Louis, B.W. Scheithauer, L.B. Rorke, G. Reifenberger, P.C. Burger, W.K. Cavenee, The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225 (2002)CrossRefPubMed P. Kleihues, D.N. Louis, B.W. Scheithauer, L.B. Rorke, G. Reifenberger, P.C. Burger, W.K. Cavenee, The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225 (2002)CrossRefPubMed
2.
go back to reference M. Jansen, S. Yip, D.N. Louis, Molecular pathology in adult gliomas: Diagnostic, prognostic, and predictive markers. Lancet Neurol. 9, 717–726 (2010)CrossRefPubMedPubMedCentral M. Jansen, S. Yip, D.N. Louis, Molecular pathology in adult gliomas: Diagnostic, prognostic, and predictive markers. Lancet Neurol. 9, 717–726 (2010)CrossRefPubMedPubMedCentral
3.
go back to reference R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, R. for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996 (2005) R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, R. for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996 (2005)
4.
5.
go back to reference C.W. Brennan, R.G. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S.R. Salama, S. Zheng, D. Chakravarty, J.Z. Sanborn, S.H. Berman, R. Beroukhim, B. Bernard, C.J. Wu, G. Genovese, I. Shmulevich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S.A. Shukla, G. Ciriello, W.K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D.D. Bigner, E.G. Van Meir, M. Prados, A. Sloan, K.L. Black, J. Eschbacher, G. Finocchiaro, W. Friedman, D.W. Andrews, A. Guha, M. Iacocca, B.P. O'Neill, G. Foltz, J. Myers, D.J. Weisenberger, R. Penny, R. Kucherlapati, C.M. Perou, D.N. Hayes, R. Gibbs, M. Marra, G.B. Mills, E. Lander, P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel, P.W. Laird, D. Haussler, G. Getz, L. Chin, T.R. Network, The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013)CrossRefPubMedPubMedCentral C.W. Brennan, R.G. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S.R. Salama, S. Zheng, D. Chakravarty, J.Z. Sanborn, S.H. Berman, R. Beroukhim, B. Bernard, C.J. Wu, G. Genovese, I. Shmulevich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S.A. Shukla, G. Ciriello, W.K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D.D. Bigner, E.G. Van Meir, M. Prados, A. Sloan, K.L. Black, J. Eschbacher, G. Finocchiaro, W. Friedman, D.W. Andrews, A. Guha, M. Iacocca, B.P. O'Neill, G. Foltz, J. Myers, D.J. Weisenberger, R. Penny, R. Kucherlapati, C.M. Perou, D.N. Hayes, R. Gibbs, M. Marra, G.B. Mills, E. Lander, P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel, P.W. Laird, D. Haussler, G. Getz, L. Chin, T.R. Network, The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013)CrossRefPubMedPubMedCentral
6.
go back to reference Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)CrossRef Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)CrossRef
7.
go back to reference M.L. Suva, E. Rheinbay, S.M. Gillespie, A.P. Patel, H. Wakimoto, S.D. Rabkin, N. Riggi, A.S. Chi, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, M.N. Rivera, N. Rossetti, S. Kasif, S. Beik, S. Kadri, I. Tirosh, I. Wortman, A.K. Shalek, O. Rozenblatt-Rosen, A. Regev, D.N. Louis, B.E. Bernstein, Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014)CrossRefPubMedPubMedCentral M.L. Suva, E. Rheinbay, S.M. Gillespie, A.P. Patel, H. Wakimoto, S.D. Rabkin, N. Riggi, A.S. Chi, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, M.N. Rivera, N. Rossetti, S. Kasif, S. Beik, S. Kadri, I. Tirosh, I. Wortman, A.K. Shalek, O. Rozenblatt-Rosen, A. Regev, D.N. Louis, B.E. Bernstein, Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014)CrossRefPubMedPubMedCentral
9.
go back to reference A.R. Safa, M.R. Saadatzadeh, A.A. Cohen-Gadol, K.E. Pollok, K. Bijangi-Vishehsaraei, Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2, 152–163 (2015)CrossRefPubMedPubMedCentral A.R. Safa, M.R. Saadatzadeh, A.A. Cohen-Gadol, K.E. Pollok, K. Bijangi-Vishehsaraei, Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2, 152–163 (2015)CrossRefPubMedPubMedCentral
10.
go back to reference M.L. Suva, N. Riggi, B.E. Bernstein, Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013)CrossRefPubMed M.L. Suva, N. Riggi, B.E. Bernstein, Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013)CrossRefPubMed
11.
go back to reference A.M. de la Rocha, N. Sampron, M.M. Alonso, A. Matheu, Role of SOX family of transcription factors in central nervous system tumors. Am. J. Cancer Res. 4, 312–324 (2014)PubMedPubMedCentral A.M. de la Rocha, N. Sampron, M.M. Alonso, A. Matheu, Role of SOX family of transcription factors in central nervous system tumors. Am. J. Cancer Res. 4, 312–324 (2014)PubMedPubMedCentral
12.
go back to reference J. Holmberg, X. He, I. Peredo, A. Orrego, G. Hesselager, C. Ericsson, O. Hovatta, S.M. Oba-Shinjo, S.K. Marie, M. Nister, J. Muhr, Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS One 6, e18454 (2011)CrossRefPubMedPubMedCentral J. Holmberg, X. He, I. Peredo, A. Orrego, G. Hesselager, C. Ericsson, O. Hovatta, S.M. Oba-Shinjo, S.K. Marie, M. Nister, J. Muhr, Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS One 6, e18454 (2011)CrossRefPubMedPubMedCentral
13.
go back to reference A.D. Berezovsky, L.M. Poisson, D. Cherba, C.P. Webb, A.D. Transou, N.W. Lemke, X. Hong, L.A. Hasselbach, S.M. Irtenkauf, T. Mikkelsen, A.C. deCarvalho, Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 16, 193–206, 206 e119–125 (2014)CrossRefPubMedPubMedCentral A.D. Berezovsky, L.M. Poisson, D. Cherba, C.P. Webb, A.D. Transou, N.W. Lemke, X. Hong, L.A. Hasselbach, S.M. Irtenkauf, T. Mikkelsen, A.C. deCarvalho, Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 16, 193–206, 206 e119–125 (2014)CrossRefPubMedPubMedCentral
14.
go back to reference I. Garcia, J. Aldaregia, J. Marjanovic Vicentic, P. Aldaz, L. Moreno-Cugnon, S. Torres-Bayona, E. Carrasco-Garcia, L. Garros-Regulez, L. Egana, A. Rubio, S. Pollard, M. Stevanovic, N. Sampron, A. Matheu, Oncogenic activity of SOX1 in glioblastoma. Sci. Rep. 7, 46575 (2017)CrossRefPubMedPubMedCentral I. Garcia, J. Aldaregia, J. Marjanovic Vicentic, P. Aldaz, L. Moreno-Cugnon, S. Torres-Bayona, E. Carrasco-Garcia, L. Garros-Regulez, L. Egana, A. Rubio, S. Pollard, M. Stevanovic, N. Sampron, A. Matheu, Oncogenic activity of SOX1 in glioblastoma. Sci. Rep. 7, 46575 (2017)CrossRefPubMedPubMedCentral
15.
go back to reference M. Stevanovic, R. Lovell-Badge, J. Collignon, P.N. Goodfellow, SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993)CrossRefPubMed M. Stevanovic, R. Lovell-Badge, J. Collignon, P.N. Goodfellow, SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993)CrossRefPubMed
16.
go back to reference K.S. Alatzoglou, A. Azriyanti, N. Rogers, F. Ryan, N. Curry, C. Noakes, P. Bignell, G.W. Hall, A.S. Littooij, D. Saunders, P. Thomas, H. Stewart, M.T. Dattani, SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J. Clin. Endocrinol. Metab. 99, E2702–E2708 (2014)CrossRefPubMed K.S. Alatzoglou, A. Azriyanti, N. Rogers, F. Ryan, N. Curry, C. Noakes, P. Bignell, G.W. Hall, A.S. Littooij, D. Saunders, P. Thomas, H. Stewart, M.T. Dattani, SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J. Clin. Endocrinol. Metab. 99, E2702–E2708 (2014)CrossRefPubMed
17.
go back to reference M. Bylund, E. Andersson, B.G. Novitch, J. Muhr, Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168 (2003)CrossRefPubMed M. Bylund, E. Andersson, B.G. Novitch, J. Muhr, Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168 (2003)CrossRefPubMed
18.
go back to reference M.M. Laronda, J.L. Jameson, Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology 152, 1606–1615 (2011)CrossRefPubMedPubMedCentral M.M. Laronda, J.L. Jameson, Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology 152, 1606–1615 (2011)CrossRefPubMedPubMedCentral
19.
go back to reference S. Brunelli, E. Silva Casey, D. Bell, R. Harland, R. Lovell-Badge, Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 36, 12–24 (2003)CrossRefPubMed S. Brunelli, E. Silva Casey, D. Bell, R. Harland, R. Lovell-Badge, Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 36, 12–24 (2003)CrossRefPubMed
20.
go back to reference D. Uwanogho, M. Rex, E.J. Cartwright, G. Pearl, C. Healy, P.J. Scotting, P.T. Sharpe, Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995)CrossRefPubMed D. Uwanogho, M. Rex, E.J. Cartwright, G. Pearl, C. Healy, P.J. Scotting, P.T. Sharpe, Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995)CrossRefPubMed
21.
go back to reference Y. Xia, N. Papalopulu, P.K. Vogt, J. Li, The oncogenic potential of the high mobility group box protein Sox3. Cancer Res. 60, 6303–6306 (2000)PubMed Y. Xia, N. Papalopulu, P.K. Vogt, J. Li, The oncogenic potential of the high mobility group box protein Sox3. Cancer Res. 60, 6303–6306 (2000)PubMed
22.
go back to reference K. Li, R.W. Wang, Y.G. Jiang, Y.B. Zou, W. Guo, Overexpression of Sox3 is associated with diminished prognosis in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 20(Suppl 3), S459–S466 (2013)CrossRefPubMed K. Li, R.W. Wang, Y.G. Jiang, Y.B. Zou, W. Guo, Overexpression of Sox3 is associated with diminished prognosis in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 20(Suppl 3), S459–S466 (2013)CrossRefPubMed
23.
go back to reference Q. Yan, F. Wang, Y. Miao, X. Wu, M. Bai, X. Xi, Y. Feng, Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase. Tumour Biol. 37, 12263–12271 (2016)CrossRefPubMed Q. Yan, F. Wang, Y. Miao, X. Wu, M. Bai, X. Xi, Y. Feng, Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase. Tumour Biol. 37, 12263–12271 (2016)CrossRefPubMed
24.
go back to reference R. Kim, A. Trubetskoy, T. Suzuki, N.A. Jenkins, N.G. Copeland, J. Lenz, Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–2062 (2003)CrossRefPubMedPubMedCentral R. Kim, A. Trubetskoy, T. Suzuki, N.A. Jenkins, N.G. Copeland, J. Lenz, Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–2062 (2003)CrossRefPubMedPubMedCentral
25.
go back to reference M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1. J. Exp. Clin. Cancer Res. 36, 46 (2017)CrossRefPubMedPubMedCentral M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1. J. Exp. Clin. Cancer Res. 36, 46 (2017)CrossRefPubMedPubMedCentral
26.
go back to reference S.M. Pollard, K. Yoshikawa, I.D. Clarke, D. Danovi, S. Stricker, R. Russell, J. Bayani, R. Head, M. Lee, M. Bernstein, J.A. Squire, A. Smith, P. Dirks, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009)CrossRefPubMed S.M. Pollard, K. Yoshikawa, I.D. Clarke, D. Danovi, S. Stricker, R. Russell, J. Bayani, R. Head, M. Lee, M. Bernstein, J.A. Squire, A. Smith, P. Dirks, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009)CrossRefPubMed
27.
go back to reference L. Garros-Regulez, P. Aldaz, O. Arrizabalaga, V. Moncho-Amor, E. Carrasco-Garcia, L. Manterola, L. Moreno-Cugnon, C. Barrena, J. Villanua, I. Ruiz, S. Pollard, R. Lovell-Badge, N. Sampron, I. Garcia, A. Matheu, mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin. Ther. Targets 20, 393–405 (2016)CrossRefPubMedPubMedCentral L. Garros-Regulez, P. Aldaz, O. Arrizabalaga, V. Moncho-Amor, E. Carrasco-Garcia, L. Manterola, L. Moreno-Cugnon, C. Barrena, J. Villanua, I. Ruiz, S. Pollard, R. Lovell-Badge, N. Sampron, I. Garcia, A. Matheu, mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin. Ther. Targets 20, 393–405 (2016)CrossRefPubMedPubMedCentral
28.
go back to reference J. Popovic, D. Stanisavljevic, M. Schwirtlich, A. Klajn, J. Marjanovic, M. Stevanovic, Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 9, e91852 (2014)CrossRefPubMedPubMedCentral J. Popovic, D. Stanisavljevic, M. Schwirtlich, A. Klajn, J. Marjanovic, M. Stevanovic, Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 9, e91852 (2014)CrossRefPubMedPubMedCentral
29.
go back to reference P. Bernard, H. Sim, K. Knower, E. Vilain, V. Harley, Human SRY inhibits beta-catenin-mediated transcription. Int. J. Biochem. Cell Biol. 40, 2889–2900 (2008)CrossRefPubMedPubMedCentral P. Bernard, H. Sim, K. Knower, E. Vilain, V. Harley, Human SRY inhibits beta-catenin-mediated transcription. Int. J. Biochem. Cell Biol. 40, 2889–2900 (2008)CrossRefPubMedPubMedCentral
30.
go back to reference M. van de Wetering, R. Cavallo, D. Dooijes, M. van Beest, J. van Es, J. Loureiro, A. Ypma, D. Hursh, T. Jones, A. Bejsovec, M. Peifer, M. Mortin, H. Clevers, Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997)CrossRefPubMed M. van de Wetering, R. Cavallo, D. Dooijes, M. van Beest, J. van Es, J. Loureiro, A. Ypma, D. Hursh, T. Jones, A. Bejsovec, M. Peifer, M. Mortin, H. Clevers, Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997)CrossRefPubMed
31.
go back to reference U. Naumann, P.N. Harter, J. Rubel, E. Ilina, A.E. Blank, H.B. Esteban, M. Mittelbronn, Glioma cell migration and invasion as potential target for novel treatment strategies. Transl. Neurosci. 4, 314–329 (2013)CrossRef U. Naumann, P.N. Harter, J. Rubel, E. Ilina, A.E. Blank, H.B. Esteban, M. Mittelbronn, Glioma cell migration and invasion as potential target for novel treatment strategies. Transl. Neurosci. 4, 314–329 (2013)CrossRef
32.
go back to reference Y. Lee, J.K. Lee, S.H. Ahn, J. Lee, D.H. Nam, WNT signaling in glioblastoma and therapeutic opportunities. Lab. Investig. 96, 137–150 (2016)CrossRefPubMed Y. Lee, J.K. Lee, S.H. Ahn, J. Lee, D.H. Nam, WNT signaling in glioblastoma and therapeutic opportunities. Lab. Investig. 96, 137–150 (2016)CrossRefPubMed
33.
go back to reference V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, A. Ruiz i Altaba, HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007)CrossRefPubMed V. Clement, P. Sanchez, N. de Tribolet, I. Radovanovic, A. Ruiz i Altaba, HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007)CrossRefPubMed
34.
go back to reference T.K. Rimkus, R.L. Carpenter, S. Qasem, M. Chan, H.W. Lo, Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers 8, 22 (2016) T.K. Rimkus, R.L. Carpenter, S. Qasem, M. Chan, H.W. Lo, Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers 8, 22 (2016)
36.
go back to reference Q.Y. Cai, G.Y. Liang, Y.F. Zheng, Q.Y. Tan, R.W. Wang, K. Li, Sox3 silencing inhibits metastasis and growth of esophageal squamous cell carcinoma cell via down-regulating GSK-3 beta. Int. J. Clin. Exp. Pathol. 9, 2939–2949 (2016) Q.Y. Cai, G.Y. Liang, Y.F. Zheng, Q.Y. Tan, R.W. Wang, K. Li, Sox3 silencing inhibits metastasis and growth of esophageal squamous cell carcinoma cell via down-regulating GSK-3 beta. Int. J. Clin. Exp. Pathol. 9, 2939–2949 (2016)
37.
go back to reference B. Gong, Y. Yue, R. Wang, Y. Zhang, Q. Jin, X. Zhou, Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol. 39, 1010428317706217 (2017)PubMed B. Gong, Y. Yue, R. Wang, Y. Zhang, Q. Jin, X. Zhou, Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol. 39, 1010428317706217 (2017)PubMed
38.
go back to reference H. Acloque, O.H. Ocana, A. Matheu, K. Rizzoti, C. Wise, R. Lovell-Badge, M.A. Nieto, Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev. Cell 21, 546–558 (2011)CrossRefPubMedPubMedCentral H. Acloque, O.H. Ocana, A. Matheu, K. Rizzoti, C. Wise, R. Lovell-Badge, M.A. Nieto, Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev. Cell 21, 546–558 (2011)CrossRefPubMedPubMedCentral
40.
41.
go back to reference M. Mojsin, V. Topalovic, J.M. Vicentic, M. Schwirtlich, D. Stanisavljevic, D. Drakulic, M. Stevanovic, Crosstalk between SOXB1 proteins and WNT/beta-catenin signaling in NT2/D1 cells. Histochem. Cell Biol. 144, 429–441 (2015)CrossRefPubMed M. Mojsin, V. Topalovic, J.M. Vicentic, M. Schwirtlich, D. Stanisavljevic, D. Drakulic, M. Stevanovic, Crosstalk between SOXB1 proteins and WNT/beta-catenin signaling in NT2/D1 cells. Histochem. Cell Biol. 144, 429–441 (2015)CrossRefPubMed
42.
go back to reference A.M. Zorn, G.D. Barish, B.O. Williams, P. Lavender, M.W. Klymkowsky, H.E. Varmus, Regulation of Wnt signaling by sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol. Cell 4, 487–498 (1999)CrossRefPubMed A.M. Zorn, G.D. Barish, B.O. Williams, P. Lavender, M.W. Klymkowsky, H.E. Varmus, Regulation of Wnt signaling by sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol. Cell 4, 487–498 (1999)CrossRefPubMed
43.
go back to reference L. Zhao, S.E. Zevallos, K. Rizzoti, Y. Jeong, R. Lovell-Badge, D.J. Epstein, Disruption of SoxB1-dependent sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev. Cell 22, 585–596 (2012)CrossRefPubMedPubMedCentral L. Zhao, S.E. Zevallos, K. Rizzoti, Y. Jeong, R. Lovell-Badge, D.J. Epstein, Disruption of SoxB1-dependent sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev. Cell 22, 585–596 (2012)CrossRefPubMedPubMedCentral
44.
go back to reference T. Oosterveen, S. Kurdija, Z. Alekseenko, C.W. Uhde, M. Bergsland, M. Sandberg, E. Andersson, J.M. Dias, J. Muhr, J. Ericson, Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev. Cell 23, 1006–1019 (2012)CrossRefPubMed T. Oosterveen, S. Kurdija, Z. Alekseenko, C.W. Uhde, M. Bergsland, M. Sandberg, E. Andersson, J.M. Dias, J. Muhr, J. Ericson, Mechanistic differences in the transcriptional interpretation of local and long-range Shh morphogen signaling. Dev. Cell 23, 1006–1019 (2012)CrossRefPubMed
45.
go back to reference Y.L. Hu, M. DeLay, A. Jahangiri, A.M. Molinaro, S.D. Rose, W.S. Carbonell, M.K. Aghi, Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012)CrossRefPubMedPubMedCentral Y.L. Hu, M. DeLay, A. Jahangiri, A.M. Molinaro, S.D. Rose, W.S. Carbonell, M.K. Aghi, Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012)CrossRefPubMedPubMedCentral
46.
go back to reference J. Bischof, M.A. Westhoff, J.E. Wagner, M.E. Halatsch, S. Trentmann, U. Knippschild, C.R. Wirtz, T. Burster, Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol. 39, 1010428317692227 (2017)CrossRefPubMed J. Bischof, M.A. Westhoff, J.E. Wagner, M.E. Halatsch, S. Trentmann, U. Knippschild, C.R. Wirtz, T. Burster, Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol. 39, 1010428317692227 (2017)CrossRefPubMed
47.
go back to reference Z.F. Yang, D.J. Klionsky, Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010)CrossRefPubMed Z.F. Yang, D.J. Klionsky, Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010)CrossRefPubMed
48.
49.
go back to reference T. Kanzawa, I.M. Germano, T. Komata, H. Ito, Y. Kondo, S. Kondo, Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004)CrossRefPubMed T. Kanzawa, I.M. Germano, T. Komata, H. Ito, Y. Kondo, S. Kondo, Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004)CrossRefPubMed
50.
go back to reference L. Pirtoli, G. Cevenini, P. Tini, M. Vannini, G. Oliveri, S. Marsili, V. Mourmouras, G. Rubino, C. Miracco, The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5, 930–936 (2009)CrossRefPubMed L. Pirtoli, G. Cevenini, P. Tini, M. Vannini, G. Oliveri, S. Marsili, V. Mourmouras, G. Rubino, C. Miracco, The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 5, 930–936 (2009)CrossRefPubMed
51.
go back to reference X. Huang, H.M. Bai, L. Chen, B. Li, Y.C. Lu, Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J. Clin. Neurosci. 17, 1515–1519 (2010)CrossRefPubMed X. Huang, H.M. Bai, L. Chen, B. Li, Y.C. Lu, Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J. Clin. Neurosci. 17, 1515–1519 (2010)CrossRefPubMed
52.
go back to reference M. Jimenez-Sanchez, F.M. Menzies, Y.Y. Chang, N. Simecek, T.P. Neufeld, D.C. Rubinsztein, The hedgehog signalling pathway regulates autophagy. Nat. Commun. 3, 1200 (2012)CrossRefPubMed M. Jimenez-Sanchez, F.M. Menzies, Y.Y. Chang, N. Simecek, T.P. Neufeld, D.C. Rubinsztein, The hedgehog signalling pathway regulates autophagy. Nat. Commun. 3, 1200 (2012)CrossRefPubMed
Metadata
Title
SOX3 can promote the malignant behavior of glioblastoma cells
Authors
Jelena Marjanovic Vicentic
Danijela Drakulic
Idoia Garcia
Vladanka Vukovic
Paula Aldaz
Nela Puskas
Igor Nikolic
Goran Tasic
Savo Raicevic
Laura Garros-Regulez
Nicolas Sampron
Michael J. Atkinson
Natasa Anastasov
Ander Matheu
Milena Stevanovic
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2019
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0405-5

Other articles of this Issue 1/2019

Cellular Oncology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine