Skip to main content
Top
Published in: Clinical and Translational Oncology 8/2017

01-08-2017 | Research Article

SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors

Authors: H. Yin, C. Qin, Y. Zhao, Y. Du, Z. Sheng, Q. Wang, Q. Song, L. Chen, C. Liu, T. Xu

Published in: Clinical and Translational Oncology | Issue 8/2017

Login to get access

Abstract

Purpose

To detect the expression level and significance of SOX10 in human bladder cancer.

Methods

Immunohistochemical analyses were performed to assess SOX10 protein level using a bladder cancer tissue microarray (including 59 spots of cancer tissues and 46 spots of paired normal tissues) and 31 specimens and to define the relationship between SOX10 and clinicopathological bladder cancer characteristics in patients. SOX10 protein and mRNA levels in bladder cancer cell lines (T24, 5637, BIU87, EJ) and transitional cell papilloma cell line (RT4) were tested by western blotting and quantitative real-time PCR (q-PCR), respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to investigate bladder cancer cell proliferation after SOX10 knockdown. The effect of SOX10 on cell migration and invasion was analyzed by Transwell and Matrigel assays. Kaplan–Meier survival curves and Cox regression analyses were used to evaluate SOX10 prognostic significance for bladder cancer patients. The mechanisms by which SOX10 promote bladder cancer progression were examined by western blotting.

Results

SOX10 protein was upregulated in 74.4% of bladder cancer tissues compared with adjacent normal tissues (32.6%). SOX10 protein was also upregulated in malignant cell lines. In addition, high SOX10 expression was related with clinical stage (P = 0.008), T stage (P = 0.004), histological grade (P = 0.002) and lymph node metastasis (P = 0.006). Kaplan–Meier survival curves and Cox regression analyses showed that SOX10 functioned as an independent prognostic factor for overall survival. SOX10 knockdown in bladder cancer cells significantly impacted proliferation, migration and invasion, and SOX10 might promote bladder cancer progression by altering β-catenin and Met expression.

Conclusion

SOX10 was over-expressed in bladder cancer and promoted malignant bladder cancer cell behaviors. SOX10 has potential as a molecular target for bladder cancer treatment.
Literature
1.
2.
go back to reference Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol. 2015;35:105–12.CrossRef Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol. 2015;35:105–12.CrossRef
3.
go back to reference Wyszynski A, Tanyos SA, Rees JR, Marsit CJ, Kelsey KT, Schned AR, et al. Body mass and smoking are modifiable risk factors for recurrent bladder cancer. Cancer. 2014;120(3):408–14.PubMedCrossRef Wyszynski A, Tanyos SA, Rees JR, Marsit CJ, Kelsey KT, Schned AR, et al. Body mass and smoking are modifiable risk factors for recurrent bladder cancer. Cancer. 2014;120(3):408–14.PubMedCrossRef
4.
go back to reference Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.PubMedCrossRef Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.PubMedCrossRef
5.
go back to reference Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, et al. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med. 1993;202(1):1–8.PubMedCrossRef Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, et al. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med. 1993;202(1):1–8.PubMedCrossRef
6.
go back to reference Ramos JR, Pabijan J, Garcia R, Lekka M. The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol. 2014;5:447–57.PubMedPubMedCentralCrossRef Ramos JR, Pabijan J, Garcia R, Lekka M. The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol. 2014;5:447–57.PubMedPubMedCentralCrossRef
7.
go back to reference Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–50.PubMedCrossRef Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–50.PubMedCrossRef
8.
go back to reference Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, et al. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol. 2013;379(1):92–106.PubMedCrossRef Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, et al. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol. 2013;379(1):92–106.PubMedCrossRef
9.
go back to reference Miyahara K, Kato Y, Koga H, Dizon R, Lane GJ, Suzuki R, et al. Visualization of enteric neural crest cell migration in SOX10 transgenic mouse gut using time-lapse fluorescence imaging. J Pediatr Surg. 2011;46(12):2305–8.PubMedCrossRef Miyahara K, Kato Y, Koga H, Dizon R, Lane GJ, Suzuki R, et al. Visualization of enteric neural crest cell migration in SOX10 transgenic mouse gut using time-lapse fluorescence imaging. J Pediatr Surg. 2011;46(12):2305–8.PubMedCrossRef
10.
go back to reference Mollaaghababa R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene. 2003;22(20):3024–34.PubMedCrossRef Mollaaghababa R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene. 2003;22(20):3024–34.PubMedCrossRef
11.
go back to reference Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999;46(3):313–8.PubMedCrossRef Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999;46(3):313–8.PubMedCrossRef
12.
go back to reference Izumi Y, Musha I, Suzuki E, Iso M, Jinno T, Horikawa R, et al. Hypogonadotropic hypogonadism in a female patient previously diagnosed as having waardenburg syndrome due to a sox10 mutation. Endocrine. 2015;49(2):553–6.PubMedCrossRef Izumi Y, Musha I, Suzuki E, Iso M, Jinno T, Horikawa R, et al. Hypogonadotropic hypogonadism in a female patient previously diagnosed as having waardenburg syndrome due to a sox10 mutation. Endocrine. 2015;49(2):553–6.PubMedCrossRef
13.
go back to reference Okamura K, Oiso N, Tamiya G, Makino S, Tsujioka D, Abe Y, et al. Waardenburg syndrome type IIE in a Japanese patient caused by a novel missense mutation in the SOX10 gene. J Dermatol. 2015;42(12):1211–2.PubMedCrossRef Okamura K, Oiso N, Tamiya G, Makino S, Tsujioka D, Abe Y, et al. Waardenburg syndrome type IIE in a Japanese patient caused by a novel missense mutation in the SOX10 gene. J Dermatol. 2015;42(12):1211–2.PubMedCrossRef
14.
go back to reference Wenzhi H, Ruijin W, Jieliang L, Xiaoyan M, Haibo L, Xiaoman W, et al. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II. Int J Pediatr Otorhinolaryngol. 2015;79(10):1718–21.PubMedCrossRef Wenzhi H, Ruijin W, Jieliang L, Xiaoyan M, Haibo L, Xiaoman W, et al. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II. Int J Pediatr Otorhinolaryngol. 2015;79(10):1718–21.PubMedCrossRef
15.
go back to reference Panaccione A, Chang MT, Carbone BE, Guo Y, Moskaluk CA, Virk RK, et al. NOTCH1 and SOX10 are essential for proliferation and radiation resistance of cancer stem-like cells in adenoid cystic carcinoma. Clin Cancer Res. 2016;22(8):2083–95.PubMedPubMedCentralCrossRef Panaccione A, Chang MT, Carbone BE, Guo Y, Moskaluk CA, Virk RK, et al. NOTCH1 and SOX10 are essential for proliferation and radiation resistance of cancer stem-like cells in adenoid cystic carcinoma. Clin Cancer Res. 2016;22(8):2083–95.PubMedPubMedCentralCrossRef
16.
go back to reference Kwon AY, Heo I, Lee HJ, Kim G, Kang H, Heo JH, et al. Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch. 2016;468(5):597–605.PubMedCrossRef Kwon AY, Heo I, Lee HJ, Kim G, Kang H, Heo JH, et al. Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch. 2016;468(5):597–605.PubMedCrossRef
17.
go back to reference Schmitt AC, Cohen C, Siddiqui MT. Expression of SOX10 in salivary gland oncocytic neoplasms: a review and a comparative analysis with other immunohistochemical markers. Acta Cytol. 2015;59(5):384–90.PubMedCrossRef Schmitt AC, Cohen C, Siddiqui MT. Expression of SOX10 in salivary gland oncocytic neoplasms: a review and a comparative analysis with other immunohistochemical markers. Acta Cytol. 2015;59(5):384–90.PubMedCrossRef
18.
go back to reference Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, et al. Differential Sox10 genomic occupancy in myelinating glia. Glia., 2015;63(11):1897–914.CrossRef Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, et al. Differential Sox10 genomic occupancy in myelinating glia. Glia., 2015;63(11):1897–914.CrossRef
19.
go back to reference Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z, et al. SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/beta-catenin/TCF4 cascade. Tumour Biol. 2014;35(10):9935–40.PubMedCrossRef Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z, et al. SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/beta-catenin/TCF4 cascade. Tumour Biol. 2014;35(10):9935–40.PubMedCrossRef
20.
go back to reference Tong X, Li L, Li X, Heng L, Xhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2014;5(21):10571–83.PubMedPubMedCentralCrossRef Tong X, Li L, Li X, Heng L, Xhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2014;5(21):10571–83.PubMedPubMedCentralCrossRef
21.
go back to reference Han B, Luan L, Xu Z, Wu B. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol. 2014;35(5):4101–6.PubMedCrossRef Han B, Luan L, Xu Z, Wu B. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol. 2014;35(5):4101–6.PubMedCrossRef
22.
go back to reference Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Davidson TL, Siddall NA, et al. RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB J. 2015;29(7):2759–68.PubMedCrossRef Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Davidson TL, Siddall NA, et al. RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB J. 2015;29(7):2759–68.PubMedCrossRef
23.
go back to reference Bondurand N, Kobetz A, Pingault V, Lemort N, Encha-razavi F, Couly G, et al. Expression of the SOX10 gene during human development. FEBS Lett. 1998;432(3):168–72.PubMedCrossRef Bondurand N, Kobetz A, Pingault V, Lemort N, Encha-razavi F, Couly G, et al. Expression of the SOX10 gene during human development. FEBS Lett. 1998;432(3):168–72.PubMedCrossRef
24.
go back to reference Lee KE, Nam S, Cho EA, Seong I, Lima JK, Lee S, et al. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genom. 2008;9:408.CrossRef Lee KE, Nam S, Cho EA, Seong I, Lima JK, Lee S, et al. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genom. 2008;9:408.CrossRef
25.
go back to reference Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, et al. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet. 1999;8(9):1785–9.PubMedCrossRef Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, et al. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet. 1999;8(9):1785–9.PubMedCrossRef
26.
go back to reference Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107(1):1–6.PubMedCrossRef Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107(1):1–6.PubMedCrossRef
27.
go back to reference Sham MH, Lui VC, Fu M, Chen B, Tam PK. SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung’s disease infants. Gut. 2001;49(2):220–6.PubMedPubMedCentralCrossRef Sham MH, Lui VC, Fu M, Chen B, Tam PK. SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung’s disease infants. Gut. 2001;49(2):220–6.PubMedPubMedCentralCrossRef
28.
go back to reference Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M. Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet. 2001;10(24):2783–95.PubMedCrossRef Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M. Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet. 2001;10(24):2783–95.PubMedCrossRef
29.
go back to reference Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111(2):198–206.PubMedCrossRef Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111(2):198–206.PubMedCrossRef
30.
go back to reference Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11(24):3075–85.PubMedCrossRef Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11(24):3075–85.PubMedCrossRef
31.
go back to reference McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn. 2005;233(2):430–44.PubMedCrossRef McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn. 2005;233(2):430–44.PubMedCrossRef
32.
go back to reference Bannykh SI, Stolt CC, Kim J, Perry A, Wegner M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.PubMedCrossRef Bannykh SI, Stolt CC, Kim J, Perry A, Wegner M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.PubMedCrossRef
33.
go back to reference Addo-Yobo SO, Straessle J, Anwar A, Donson AM, Kleinschmidt-demasters BK, Foreman NK. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2006;65(8):769–75.PubMedCrossRef Addo-Yobo SO, Straessle J, Anwar A, Donson AM, Kleinschmidt-demasters BK, Foreman NK. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2006;65(8):769–75.PubMedCrossRef
34.
go back to reference Yokoyama S, Takeda K, Shibahara S. Functional difference of the SOX10 mutant proteins responsible for the phenotypic variability in auditory-pigmentary disorders. J Biochem. 2006;140(4):491–9.PubMedCrossRef Yokoyama S, Takeda K, Shibahara S. Functional difference of the SOX10 mutant proteins responsible for the phenotypic variability in auditory-pigmentary disorders. J Biochem. 2006;140(4):491–9.PubMedCrossRef
35.
go back to reference Ferletta M, Uhrbom L, Olofsson T, Ponten F, Westermark B. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B–induced gliomagenesis. Mol Cancer Res. 2007;5(9):891–7.PubMedCrossRef Ferletta M, Uhrbom L, Olofsson T, Ponten F, Westermark B. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B–induced gliomagenesis. Mol Cancer Res. 2007;5(9):891–7.PubMedCrossRef
36.
go back to reference Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.PubMedCrossRef Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.PubMedCrossRef
37.
go back to reference Flammiger A, Besch R, Cook AL, Maier T, Sturm RA, Berking C. SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. J Invest Dermatol. 2009;129(4):945–53.PubMedCrossRef Flammiger A, Besch R, Cook AL, Maier T, Sturm RA, Berking C. SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. J Invest Dermatol. 2009;129(4):945–53.PubMedCrossRef
38.
go back to reference Blochin E, Nonaka D. Diagnostic value of Sox10 immunohistochemical staining for the detection of metastatic melanoma in sentinel lymph nodes. Histopathology. 2009;55(5):626–8.PubMedCrossRef Blochin E, Nonaka D. Diagnostic value of Sox10 immunohistochemical staining for the detection of metastatic melanoma in sentinel lymph nodes. Histopathology. 2009;55(5):626–8.PubMedCrossRef
39.
go back to reference Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, et al. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2016;9:1671–7.PubMedPubMedCentralCrossRef Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, et al. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2016;9:1671–7.PubMedPubMedCentralCrossRef
40.
go back to reference Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.PubMedCrossRef Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.PubMedCrossRef
41.
go back to reference Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26(8):1041–50.PubMedCrossRef Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26(8):1041–50.PubMedCrossRef
42.
go back to reference Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 2012;14(8):882–90.PubMedCrossRef Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 2012;14(8):882–90.PubMedCrossRef
44.
45.
go back to reference Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell. 2016;29(6):846–58.PubMedPubMedCentralCrossRef Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell. 2016;29(6):846–58.PubMedPubMedCentralCrossRef
Metadata
Title
SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors
Authors
H. Yin
C. Qin
Y. Zhao
Y. Du
Z. Sheng
Q. Wang
Q. Song
L. Chen
C. Liu
T. Xu
Publication date
01-08-2017
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 8/2017
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-017-1641-2

Other articles of this Issue 8/2017

Clinical and Translational Oncology 8/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine