Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Solanum nigrum Unripe fruit fraction attenuates Adriamycin resistance by down-regulating multi-drug resistance protein (Mdr)-1 through Jak-STAT pathway

Authors: Sankar Jagadeeshan, Diana David, S. Jisha, S. Manjula, S. Asha Nair

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Solanum nigrum, herbal plant that commonly grows in temperate climate zone, has been used as a traditional folk medicine whose ripen fruits were proven to exhibit anti-tumor properties. In traditional Chinese medicine, it has been used for centuries to cure inflammation, edema, mastitis and hepatic cancer and in the Ayurvedic system of traditional medicine in India, S. nigrum is applied against enteric diseases, ulcer, diarrhea and skin diseases. A methanolic glycosidic extract fraction of unripe fruit of S. nigrum (SNME) was investigated for its anticancer property and possible mechanism to surmount adriamycin resistance in NCI/ADR-RES cells.

Methods

The NCI/ADR-RES cells were treated with 7.8125, 15.625, 31.25, 62.5, 125 and 250 μg/ml of methanolic extract of S. nigrum (SNME) for 12, 24 and 48 h, to check the cell viability and proliferation. The cells were also exposed to adriamycin alone or in combination with SNME and the effects on cell growth were determined by MTT. Cell cycle analysis, Ethidium bromide and Acridine orange staining, Annexin-binding efficiency, nuclear condensation and DNA fragmentation of the apoptotic NCI/ADR-RES cells were also determined. To elucidate the relationship between SNME and multi drug resistance, we analyzed the expression levels of Mdr-1, JAK1, STAT3, and pSTAT3 in NCI/ADR-RES cells after treatment with SNME.

Results

Results from the cytotoxicity assay showed a direct correlation between the concentration of methanolic glycosidic extract fraction of S. nigrum (SNME) and the surviving cell population. Combination with Adriamycin, SNME exhibits a synergistic action on NCI/ADR-RES cells, giving the first line of evidence to overcoming Adriamycin resistance. The SNME mediated cell growth suppression was proven to be apoptotic, based on results obtained from DNA fragmentation, annexin V apoptosis assaay and PARP cleavage analysis. Looking into the molecular insight SNME surpasses the chemoresistance of NCI/ADR-RES cells by inhibiting the JAK-STAT3 signaling pathway through the down regulation of JAK1, STAT3, pSTAT3, and Mdr1 expression.

Conclusions

Collectively our findings suggest that unripe fruit of Solanum nigrum could possibly be used as a chemosensitizing agent against Adriamycin resistant cancers.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012. Cancer incidence and mortality worldwide: IARC Cancer Base no. 11. International Agency for Research on Cancer: Lyon, France; 2013. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012. Cancer incidence and mortality worldwide: IARC Cancer Base no. 11. International Agency for Research on Cancer: Lyon, France; 2013.
2.
go back to reference Ashraf RA, Sarfraz A, Mahmood A, Din MU. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. Leaves. Ind Crop Prod. 2015;74:241–8.CrossRef Ashraf RA, Sarfraz A, Mahmood A, Din MU. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. Leaves. Ind Crop Prod. 2015;74:241–8.CrossRef
3.
go back to reference Paschka AG, Butler R, Young CYF. Induction of apoptosis in prostate cancer cell lines by the green tea component, β-epigallocatechin-3-gallate. Cancer Lett. 1998;130:1–7.CrossRefPubMed Paschka AG, Butler R, Young CYF. Induction of apoptosis in prostate cancer cell lines by the green tea component, β-epigallocatechin-3-gallate. Cancer Lett. 1998;130:1–7.CrossRefPubMed
4.
go back to reference Nabekura T, Kamiyama S, Kitagawa S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem Biophys Res Commun. 2005;327:866–70.CrossRefPubMed Nabekura T, Kamiyama S, Kitagawa S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem Biophys Res Commun. 2005;327:866–70.CrossRefPubMed
5.
go back to reference Kumar VP, Shashidhara S, Kumar MM, Sridhara BY. Cytoprotective role of Solanum nigrum against gentamicin-induced kidney cell (Vero cells) damage in vitro. Fitoterapia. 2001;72:481–6.CrossRefPubMed Kumar VP, Shashidhara S, Kumar MM, Sridhara BY. Cytoprotective role of Solanum nigrum against gentamicin-induced kidney cell (Vero cells) damage in vitro. Fitoterapia. 2001;72:481–6.CrossRefPubMed
6.
go back to reference Heo KS, Lee SJ, Ko JH, Lim K, Lim KT. Glycoprotein isolated from Solanum nigrum inhibits the DNA-binding activities of NF-κB and AP-1, and increases the production of nitric oxide in TPA stimulated MCF-7 cells. Toxicol in Vitro. 2004;18:755–63.CrossRefPubMed Heo KS, Lee SJ, Ko JH, Lim K, Lim KT. Glycoprotein isolated from Solanum nigrum inhibits the DNA-binding activities of NF-κB and AP-1, and increases the production of nitric oxide in TPA stimulated MCF-7 cells. Toxicol in Vitro. 2004;18:755–63.CrossRefPubMed
7.
go back to reference An L, Tang J, Liu XM, Gao NN. Review about mechanisms of anti-cancer of Solanum nigrum. Zhongguo Zhong Yao Za Zhi. 2006;31:1225–6.PubMed An L, Tang J, Liu XM, Gao NN. Review about mechanisms of anti-cancer of Solanum nigrum. Zhongguo Zhong Yao Za Zhi. 2006;31:1225–6.PubMed
8.
go back to reference Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, Yao X. Steroidal saponins from Solanum nigrum. J Nat Prod. 2006;69:1158–63.CrossRefPubMed Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, Yao X. Steroidal saponins from Solanum nigrum. J Nat Prod. 2006;69:1158–63.CrossRefPubMed
9.
go back to reference Ji YB, Gao SY, Ji CF, Zou X. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein. J Ethnopharmacol. 2008;115:194–202.CrossRefPubMed Ji YB, Gao SY, Ji CF, Zou X. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein. J Ethnopharmacol. 2008;115:194–202.CrossRefPubMed
10.
go back to reference Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruits of Solanum nigrum L. inhibit cell growth and induce apoptosis in MCF-7 cells. Food Chemical Toxicology. 2003;41:1421–8.CrossRefPubMed Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruits of Solanum nigrum L. inhibit cell growth and induce apoptosis in MCF-7 cells. Food Chemical Toxicology. 2003;41:1421–8.CrossRefPubMed
11.
go back to reference Lee JS, Lim KK, Lim KT. 150 kDa glycoprotein isolated from Solanum nigrum Linne enhances activities of detoxicant enzymes and lowers plasmic cholesterol in mouse. Pharmacol Res. 2005;51:399–408.CrossRefPubMed Lee JS, Lim KK, Lim KT. 150 kDa glycoprotein isolated from Solanum nigrum Linne enhances activities of detoxicant enzymes and lowers plasmic cholesterol in mouse. Pharmacol Res. 2005;51:399–408.CrossRefPubMed
12.
go back to reference Lim KT. Glycoprotein isolated from Solanum nigrum L kills HT-29 cells through apoptosis. J Med Food. 2005;8:215–26.CrossRefPubMed Lim KT. Glycoprotein isolated from Solanum nigrum L kills HT-29 cells through apoptosis. J Med Food. 2005;8:215–26.CrossRefPubMed
13.
go back to reference Li J, Li QW, Feng T, Zhang T, Li K, Zhao R, Han Z, Gao D. Antitumor activity of crude polysaccharides isolated from Solanum nigrum Linne on U14 cervical carcinoma bearing mice. Phytother Res. 2007;21:832–40.CrossRefPubMed Li J, Li QW, Feng T, Zhang T, Li K, Zhao R, Han Z, Gao D. Antitumor activity of crude polysaccharides isolated from Solanum nigrum Linne on U14 cervical carcinoma bearing mice. Phytother Res. 2007;21:832–40.CrossRefPubMed
14.
go back to reference Lin HM, Tseng HC, Wang CJ, Chyau CC, Liao KK, Peng PL, Chou FP. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem. 2007;55:3620–8.CrossRefPubMed Lin HM, Tseng HC, Wang CJ, Chyau CC, Liao KK, Peng PL, Chou FP. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem. 2007;55:3620–8.CrossRefPubMed
15.
go back to reference Ravi V, Saleem TSM, Patel SS, Ramamurthy J, Gauthaman K. Anti-inflammatory effect of Methanolic extract of Solanum nigrum Linn berries. Int J Appl Res Nat Prod. 2009;2:33–6. Ravi V, Saleem TSM, Patel SS, Ramamurthy J, Gauthaman K. Anti-inflammatory effect of Methanolic extract of Solanum nigrum Linn berries. Int J Appl Res Nat Prod. 2009;2:33–6.
16.
go back to reference Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC. The role of P- glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in MDR1a (−/−) and MDR1b (+/+) mice. Br J Pharmacol. 1999;128:563–8.CrossRefPubMedPubMedCentral Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC. The role of P- glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in MDR1a (−/−) and MDR1b (+/+) mice. Br J Pharmacol. 1999;128:563–8.CrossRefPubMedPubMedCentral
17.
go back to reference Wang JS, Ruan Y, Taylor RM, Donovan JL, Markowitz JS, DeVane CL. Brain penetration of methadone (R)- and(S)- enantiomers is greatly increased by P- glycoprotein deficiency in the blood-brain barrier of Abcb1a gene knockout mice. Psychopharmacology. 2004;173:132–8.CrossRefPubMed Wang JS, Ruan Y, Taylor RM, Donovan JL, Markowitz JS, DeVane CL. Brain penetration of methadone (R)- and(S)- enantiomers is greatly increased by P- glycoprotein deficiency in the blood-brain barrier of Abcb1a gene knockout mice. Psychopharmacology. 2004;173:132–8.CrossRefPubMed
18.
go back to reference Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet. 2004;43:553–76.CrossRefPubMed Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet. 2004;43:553–76.CrossRefPubMed
19.
go back to reference Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8:945–54.PubMed Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8:945–54.PubMed
20.
go back to reference Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 2000;19:6613–26.CrossRefPubMed Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 2000;19:6613–26.CrossRefPubMed
21.
go back to reference Yu H, Jove R. The STATS of cancer-new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.CrossRefPubMed Yu H, Jove R. The STATS of cancer-new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.CrossRefPubMed
22.
go back to reference Lau CK, Yang ZF, Lam SP, Lam CT, Ngai P, Tam KH, Poon RT, Fan ST. Inhibition of Stat3 activity by YC-1 enhances chemo-sensitivity in hepatocellular carcinoma. Cancer Biol Ther. 2007;6:1900–7.CrossRefPubMed Lau CK, Yang ZF, Lam SP, Lam CT, Ngai P, Tam KH, Poon RT, Fan ST. Inhibition of Stat3 activity by YC-1 enhances chemo-sensitivity in hepatocellular carcinoma. Cancer Biol Ther. 2007;6:1900–7.CrossRefPubMed
23.
go back to reference Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, Ram Z, Orenstein A, Kershenovich A, Michowiz S, Cohen YI, Rappaport ZH, Freidkin I, Albeck M, Longo DL, Kalechman Y. Ammonium trichloro (dioxoethylene-o,o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64:1843–52.CrossRefPubMed Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, Ram Z, Orenstein A, Kershenovich A, Michowiz S, Cohen YI, Rappaport ZH, Freidkin I, Albeck M, Longo DL, Kalechman Y. Ammonium trichloro (dioxoethylene-o,o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64:1843–52.CrossRefPubMed
24.
go back to reference Zhou J, Ong CN, Hur GM, Shen HM. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol. 2010;79:1242–50.CrossRefPubMed Zhou J, Ong CN, Hur GM, Shen HM. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol. 2010;79:1242–50.CrossRefPubMed
25.
go back to reference Ikuta K, Takemura K, Kihara M, Nishimura M, Ueda N, Naito S, Lee E, Shimizu E, Yamauchi A. Overexpression of constitutive signal transducer and activator of transcription 3 mRNA in cisplatin-resistant human non-small cell lung cancer cells. Oncol Rep. 2005;13:217–22.PubMed Ikuta K, Takemura K, Kihara M, Nishimura M, Ueda N, Naito S, Lee E, Shimizu E, Yamauchi A. Overexpression of constitutive signal transducer and activator of transcription 3 mRNA in cisplatin-resistant human non-small cell lung cancer cells. Oncol Rep. 2005;13:217–22.PubMed
26.
go back to reference Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hample C, Lee H, Seiden MV. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12:5055–63.CrossRefPubMed Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hample C, Lee H, Seiden MV. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12:5055–63.CrossRefPubMed
27.
go back to reference Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentral Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentral
28.
go back to reference Jisha S, Sreeja S, Manjula S. In vitro and in vivo estrogenic activity of glycoside fractions of Solanum nigrum fruits. Indian J Med Res. 2011;134:369–74.PubMedPubMedCentral Jisha S, Sreeja S, Manjula S. In vitro and in vivo estrogenic activity of glycoside fractions of Solanum nigrum fruits. Indian J Med Res. 2011;134:369–74.PubMedPubMedCentral
29.
go back to reference Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.CrossRefPubMed Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.CrossRefPubMed
30.
go back to reference Chou TC, Martin N. CompuSyn for drug combinations: PC software and User’s guide: a computer program for Quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. Paramus, (NJ): ComboSyn Inc; 2005. Chou TC, Martin N. CompuSyn for drug combinations: PC software and User’s guide: a computer program for Quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. Paramus, (NJ): ComboSyn Inc; 2005.
31.
go back to reference Zhang X, Xiao W, Wang L, Tian Z, Zhang J. Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp. PLoS One. 2011;6:e20965.CrossRefPubMedPubMedCentral Zhang X, Xiao W, Wang L, Tian Z, Zhang J. Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp. PLoS One. 2011;6:e20965.CrossRefPubMedPubMedCentral
32.
go back to reference Hu K, Kobayashi H, Dong A, Jing Y, Iwasaki S, Yao X. Antineoplastic agents III: steroidal glycosides from Solanum nigrum. Planta Med. 1999;65:35–8.CrossRefPubMed Hu K, Kobayashi H, Dong A, Jing Y, Iwasaki S, Yao X. Antineoplastic agents III: steroidal glycosides from Solanum nigrum. Planta Med. 1999;65:35–8.CrossRefPubMed
33.
go back to reference Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Nat Cancer Institute. 1997;89:1881–6.CrossRef Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Nat Cancer Institute. 1997;89:1881–6.CrossRef
34.
35.
go back to reference Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets. 2004;8:409–22.CrossRefPubMed Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets. 2004;8:409–22.CrossRefPubMed
36.
go back to reference Lim PC, Cao X. Serine phosphorylation and negative regulation of Stat3 by JNK. J Biol Chem. 1999;274(43):31055–61.CrossRefPubMed Lim PC, Cao X. Serine phosphorylation and negative regulation of Stat3 by JNK. J Biol Chem. 1999;274(43):31055–61.CrossRefPubMed
37.
go back to reference Chung J, Uchida E, Grammer CT, Blenis J. STAT3 serine phosphorylation by ERK-dependent and independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997;17:6508–16.CrossRefPubMedPubMedCentral Chung J, Uchida E, Grammer CT, Blenis J. STAT3 serine phosphorylation by ERK-dependent and independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997;17:6508–16.CrossRefPubMedPubMedCentral
38.
go back to reference Wakahara R, Kunimoto H, Tanino K, Kojima H, Inoue A, Shintaku H, Nakajima K. Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells. 2012;17:132–45.CrossRefPubMed Wakahara R, Kunimoto H, Tanino K, Kojima H, Inoue A, Shintaku H, Nakajima K. Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells. 2012;17:132–45.CrossRefPubMed
39.
go back to reference Siddiquee AL, Zaid K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18:254–7.CrossRefPubMedCentral Siddiquee AL, Zaid K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18:254–7.CrossRefPubMedCentral
40.
go back to reference Mickisch GH, Pastan I, Gottesman MM. Multidrug resistant transgenic mice as a novel pharmacologic tool. BioEssays. 1991;13:381–7.CrossRefPubMed Mickisch GH, Pastan I, Gottesman MM. Multidrug resistant transgenic mice as a novel pharmacologic tool. BioEssays. 1991;13:381–7.CrossRefPubMed
41.
go back to reference Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55:425–61.CrossRefPubMed Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55:425–61.CrossRefPubMed
42.
go back to reference Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67:269–76.CrossRefPubMed Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67:269–76.CrossRefPubMed
Metadata
Title
Solanum nigrum Unripe fruit fraction attenuates Adriamycin resistance by down-regulating multi-drug resistance protein (Mdr)-1 through Jak-STAT pathway
Authors
Sankar Jagadeeshan
Diana David
S. Jisha
S. Manjula
S. Asha Nair
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1872-3

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue