Skip to main content
Top
Published in: Comparative Hepatology 1/2004

Open Access 01-01-2004 | Research

Sodium nitroprusside and peroxynitrite effect on hepatic DNases: an in vitro and in vivostudy

Authors: Gordana Kocic, Dusica Pavlovic, Radmila Pavlovic, Goran Nikolic, Tatjana Cvetkovic, Ivana Stojanovic, Tatjana Jevtovic, Radivoj Kocic, Dusan Sokolovic

Published in: Comparative Hepatology | Issue 1/2004

Login to get access

Abstract

Background

It has been documented that nitric oxide (NO) donor sodium nitroprusside (SNP) and authentic peroxynitrite are capable of promoting apoptosis in a number of different cell types. Various endonucleases have been proposed as candidates responsible for the internucleosomal cleavage of the genomic DNA observed during apoptosis, but the main effect is attributed to the alkaline-DNases (Mg2+- and caspase-dependent) and acid-DNase. The aim of this study was to examine an in vivo and in vitro possibility for alkaline- and acid-DNases to be activated by SNP and peroxynitrite.

Results

The effect on liver tissue alkaline and acid DNase activity together with the markers of tissue and plasma oxidative and nitrosative stress (lipid peroxidation, SH group content, carbonyl groups and nitrotyrosine formation) was investigated in plasma and liver tissue. The activity of liver alkaline DNase increased and that of acid DNase decreased after in vivo treatment with either SNP or peroxynitrite. A difference observed between the in vivo and in vitro effect of oxide donor (i.e., SNP) or peroxynitrite upon alkaline DNase activity existed, and it may be due to the existence of the "inducible" endonuclease. After a spectrophotometric scan analysis of purified DNA, it was documented that both SNP and peroxynitrite induce various DNA modifications (nitroguanine formation being the most important one) whereas DNA fragmentation was not significantly increased.

Conclusion

Alkaline DNase activation seems to be associated with the programmed destruction of the genome, leading to the fragmentation of damaged DNA sites. Thus, the elimination of damaged cells appears to be a likely factor in prevention against mutation and carcinogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Searle J, Harmon BV, Bishop CJ, Kerr JFR: The significance of cell death by apoptosis in hepatobiliary disease. J Gastroenterol Hepatol. 1987, 2: 77-96.CrossRef Searle J, Harmon BV, Bishop CJ, Kerr JFR: The significance of cell death by apoptosis in hepatobiliary disease. J Gastroenterol Hepatol. 1987, 2: 77-96.CrossRef
2.
go back to reference Laskin JD, Heck DE, Gardner CR, Laskin DL: Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid Redox Signal. 2001, 3: 261-271. 10.1089/152308601300185214.CrossRefPubMed Laskin JD, Heck DE, Gardner CR, Laskin DL: Prooxidant and antioxidant functions of nitric oxide in liver toxicity. Antioxid Redox Signal. 2001, 3: 261-271. 10.1089/152308601300185214.CrossRefPubMed
3.
go back to reference Vincent AM, Maiese K: Nitric oxide induction of neuronal endonuclease activity in programmed cell death. Exp Cell Res. 1999, 246: 290-300. 10.1006/excr.1998.4282.CrossRefPubMed Vincent AM, Maiese K: Nitric oxide induction of neuronal endonuclease activity in programmed cell death. Exp Cell Res. 1999, 246: 290-300. 10.1006/excr.1998.4282.CrossRefPubMed
4.
go back to reference Nishio E, Fukushima K, Shiozaki M, Watanabe Y: Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism. Biochem Biophys Res Commun. 1996, 221: 163-168. 10.1006/bbrc.1996.0563.CrossRefPubMed Nishio E, Fukushima K, Shiozaki M, Watanabe Y: Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism. Biochem Biophys Res Commun. 1996, 221: 163-168. 10.1006/bbrc.1996.0563.CrossRefPubMed
6.
go back to reference Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula A, Koch WH, Andrews AW, Allen JS, Keefer LK: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003.CrossRefPubMed Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula A, Koch WH, Andrews AW, Allen JS, Keefer LK: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003.CrossRefPubMed
7.
go back to reference Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR: DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA. 1992, 89: 3030-3034.PubMedCentralCrossRefPubMed Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR: DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA. 1992, 89: 3030-3034.PubMedCentralCrossRefPubMed
8.
go back to reference Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991, 266: 4244-4250.PubMed Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991, 266: 4244-4250.PubMed
9.
go back to reference Kung AL, Zetterberg A, Sherwood SW, Schimke RT: Cytotoxic effects of cell cycle phase specific agents: result of cell cycle perturbation. Cancer Res. 1990, 50: 7307-7317.PubMed Kung AL, Zetterberg A, Sherwood SW, Schimke RT: Cytotoxic effects of cell cycle phase specific agents: result of cell cycle perturbation. Cancer Res. 1990, 50: 7307-7317.PubMed
10.
go back to reference Furuya Y, Isaacs JT: Differential gene regulation during programmed death (apoptosis) versus proliferation of prostatic glandular cells induced by androgen manipulation. Endocrinology. 1993, 133: 2660-2666. 10.1210/en.133.6.2660.PubMed Furuya Y, Isaacs JT: Differential gene regulation during programmed death (apoptosis) versus proliferation of prostatic glandular cells induced by androgen manipulation. Endocrinology. 1993, 133: 2660-2666. 10.1210/en.133.6.2660.PubMed
12.
go back to reference Kumar S: ICE-like proteases in apoptosis. Trends Biochem Sci. 1995, 20: 198-202. 10.1016/S0968-0004(00)89007-6.CrossRefPubMed Kumar S: ICE-like proteases in apoptosis. Trends Biochem Sci. 1995, 20: 198-202. 10.1016/S0968-0004(00)89007-6.CrossRefPubMed
13.
go back to reference Los M, Van de Craen M, Penning LC, Schenk H, Westendorp HM, Baeuerle PA, Dröge W, Krammer PH, Fiers W, Schulze-Osthoff K: Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature. 1995, 375: 81-83. 10.1038/375081a0.CrossRefPubMed Los M, Van de Craen M, Penning LC, Schenk H, Westendorp HM, Baeuerle PA, Dröge W, Krammer PH, Fiers W, Schulze-Osthoff K: Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature. 1995, 375: 81-83. 10.1038/375081a0.CrossRefPubMed
16.
go back to reference Bernabe JC, Tejedo JR, Rincon P, Cahuana GM, Ramirey R, Sobrino F, Bedoya FJ: Sodium nitroprusside-induced mitochondrial apoptotic events in insulin-secreting RINm5F cells are associated with MAP kinases activation. Exp Cell Res. 2001, 269: 222-229. 10.1006/excr.2001.5315.CrossRefPubMed Bernabe JC, Tejedo JR, Rincon P, Cahuana GM, Ramirey R, Sobrino F, Bedoya FJ: Sodium nitroprusside-induced mitochondrial apoptotic events in insulin-secreting RINm5F cells are associated with MAP kinases activation. Exp Cell Res. 2001, 269: 222-229. 10.1006/excr.2001.5315.CrossRefPubMed
17.
go back to reference Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H: Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995, 16: 2045-2050.CrossRefPubMed Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H: Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995, 16: 2045-2050.CrossRefPubMed
18.
go back to reference Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons RL, Billiar TR: Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA. 1993, 90: 522-526.PubMedCentralCrossRefPubMed Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons RL, Billiar TR: Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA. 1993, 90: 522-526.PubMedCentralCrossRefPubMed
19.
go back to reference Cohen RA: The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis. 1995, 38: 105-128.CrossRefPubMed Cohen RA: The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis. 1995, 38: 105-128.CrossRefPubMed
20.
go back to reference Serracino FI, Mathie RT: Nitric oxide and hepatic ischemia-reperfusion injury. Hepatogastroenterology. 2000, 47: 1722-1725. Serracino FI, Mathie RT: Nitric oxide and hepatic ischemia-reperfusion injury. Hepatogastroenterology. 2000, 47: 1722-1725.
21.
go back to reference D'Ambrosio SM, Gibson-D'Ambrosio RE, Brady T, Oberyszyn AS, Robertson FM: Mechanism of nitric oxide-induced cytotoxicity in normal human hepatocytes. Environ Mol Mutagen. 2001, 37: 46-54. 10.1002/1098-2280(2001)37:1<46::AID-EM1005>3.0.CO;2-6.CrossRefPubMed D'Ambrosio SM, Gibson-D'Ambrosio RE, Brady T, Oberyszyn AS, Robertson FM: Mechanism of nitric oxide-induced cytotoxicity in normal human hepatocytes. Environ Mol Mutagen. 2001, 37: 46-54. 10.1002/1098-2280(2001)37:1<46::AID-EM1005>3.0.CO;2-6.CrossRefPubMed
22.
go back to reference Pinsky DJ, Aji W, Szabolcs M, Athan ES, Liu Y, Yang YM, Kline RP, Olson KE, Cannon PJ: Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocites in culture. Am J Physiol. 1999, 277: H1189-H1199.PubMed Pinsky DJ, Aji W, Szabolcs M, Athan ES, Liu Y, Yang YM, Kline RP, Olson KE, Cannon PJ: Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocites in culture. Am J Physiol. 1999, 277: H1189-H1199.PubMed
23.
go back to reference Kolb JP: Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia. 2000, 14: 1685-1694. 10.1038/sj.leu.2401896.CrossRefPubMed Kolb JP: Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia. 2000, 14: 1685-1694. 10.1038/sj.leu.2401896.CrossRefPubMed
24.
go back to reference Tsi CJ, Chao Y, Chen CW, Lin WW: Aurintricarboxylic acid protects against cell death caused by lipopolysaccharide in macrophages by decreasing inducible nitric oxide synthase induction via I kappa B kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase inhibition. Mol Pharmacol. 2002, 62: 90-101. 10.1124/mol.62.1.90.CrossRefPubMed Tsi CJ, Chao Y, Chen CW, Lin WW: Aurintricarboxylic acid protects against cell death caused by lipopolysaccharide in macrophages by decreasing inducible nitric oxide synthase induction via I kappa B kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase inhibition. Mol Pharmacol. 2002, 62: 90-101. 10.1124/mol.62.1.90.CrossRefPubMed
25.
go back to reference Mannick JB, Asano K, Izum K, Kieff E, Stamler JS: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell. 1994, 79: 1137-1146. 10.1016/0092-8674(94)90005-1.CrossRefPubMed Mannick JB, Asano K, Izum K, Kieff E, Stamler JS: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell. 1994, 79: 1137-1146. 10.1016/0092-8674(94)90005-1.CrossRefPubMed
26.
go back to reference Genaro AM, Hortelano S, Alvarez A, Martinez C, Bosca L: Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest. 1995, 95: 1884-1890.PubMedCentralCrossRefPubMed Genaro AM, Hortelano S, Alvarez A, Martinez C, Bosca L: Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest. 1995, 95: 1884-1890.PubMedCentralCrossRefPubMed
27.
go back to reference Enari MH, Sakahira H, Yokoyama K, Okawa A, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature. 1998, 391: 43-50. 10.1038/34112.CrossRefPubMed Enari MH, Sakahira H, Yokoyama K, Okawa A, Iwamatsu A, Nagata S: A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature. 1998, 391: 43-50. 10.1038/34112.CrossRefPubMed
28.
go back to reference Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X: The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA. 1998, 95: 8461-8466. 10.1073/pnas.95.15.8461.PubMedCentralCrossRefPubMed Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X: The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA. 1998, 95: 8461-8466. 10.1073/pnas.95.15.8461.PubMedCentralCrossRefPubMed
29.
go back to reference Nishimura K, Tanuma S: Presence of DNase gamma-like endonuclease in nuclei of neuronal differentiated PC12 cells. Apoptosis. 1998, 3: 97-103. 10.1023/A:1009644924530.CrossRefPubMed Nishimura K, Tanuma S: Presence of DNase gamma-like endonuclease in nuclei of neuronal differentiated PC12 cells. Apoptosis. 1998, 3: 97-103. 10.1023/A:1009644924530.CrossRefPubMed
30.
go back to reference Montague JW, Hughes FJ, Cidlowski JA: Native recombinant cyclophylins A, B and C degrade DNA independently of peptydyl-prolyl cis-trans-isomerase activity. Potential roles of cyclophylins in apoptosis. J Biol Chem. 1997, 272: 6677-6684. 10.1074/jbc.272.10.6677.CrossRefPubMed Montague JW, Hughes FJ, Cidlowski JA: Native recombinant cyclophylins A, B and C degrade DNA independently of peptydyl-prolyl cis-trans-isomerase activity. Potential roles of cyclophylins in apoptosis. J Biol Chem. 1997, 272: 6677-6684. 10.1074/jbc.272.10.6677.CrossRefPubMed
31.
go back to reference Nagata T, Kishi H, Liu QL, Yoshino T, Matsuda T, Jin ZX, Murayama K, Tsukada K, Muraguchi A: Possible Involvement of Cyclophilin B and Caspase-Activated Deoxyribonuclease in the Induction of Chromosomal DNA Degradation in TCR-Stimulated Thymocytes. J Immunol. 2000, 165: 4281-4289.CrossRefPubMed Nagata T, Kishi H, Liu QL, Yoshino T, Matsuda T, Jin ZX, Murayama K, Tsukada K, Muraguchi A: Possible Involvement of Cyclophilin B and Caspase-Activated Deoxyribonuclease in the Induction of Chromosomal DNA Degradation in TCR-Stimulated Thymocytes. J Immunol. 2000, 165: 4281-4289.CrossRefPubMed
32.
go back to reference Torriglia A, Chaudun E, Chany-Fournier F, Jeanny C, Courtois CJ, Counis YMF: Involvement of DNase II in Nuclear Degeneration during Lens Cell Differentiation. J Biol Chem. 1995, 270: 28579-28585. 10.1074/jbc.270.48.28579.CrossRefPubMed Torriglia A, Chaudun E, Chany-Fournier F, Jeanny C, Courtois CJ, Counis YMF: Involvement of DNase II in Nuclear Degeneration during Lens Cell Differentiation. J Biol Chem. 1995, 270: 28579-28585. 10.1074/jbc.270.48.28579.CrossRefPubMed
33.
go back to reference Counis MF: L-DNase II, a Molecule That Links Proteases and Endonucleases in Apoptosis, Derives from the Ubiquitous Serpin Leukocyte Elastase Inhibitor. Mol Cell Biol. 1998, 18: 3612-3619.PubMedCentralCrossRefPubMed Counis MF: L-DNase II, a Molecule That Links Proteases and Endonucleases in Apoptosis, Derives from the Ubiquitous Serpin Leukocyte Elastase Inhibitor. Mol Cell Biol. 1998, 18: 3612-3619.PubMedCentralCrossRefPubMed
34.
go back to reference Wu YC, Stanfield GM, Horvitz HR: NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes & Dev. 2000, 14: 536-548. Wu YC, Stanfield GM, Horvitz HR: NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes & Dev. 2000, 14: 536-548.
35.
go back to reference Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H: DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucl Acids Res. 1996, 24: 4105-4110. 10.1093/nar/24.21.4105.PubMedCentralCrossRefPubMed Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H: DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucl Acids Res. 1996, 24: 4105-4110. 10.1093/nar/24.21.4105.PubMedCentralCrossRefPubMed
36.
go back to reference Zingarelli B, O'Connor M, Wong H, Salzman AL, Szabó C: Peroxynitrite-mediated DNA strand breakage activates poly-ADP ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol. 1996, 156: 350-353.PubMed Zingarelli B, O'Connor M, Wong H, Salzman AL, Szabó C: Peroxynitrite-mediated DNA strand breakage activates poly-ADP ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol. 1996, 156: 350-353.PubMed
37.
go back to reference Szabo C, Ohshima H: DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997, 1: 373-385. 10.1006/niox.1997.0143.CrossRefPubMed Szabo C, Ohshima H: DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. 1997, 1: 373-385. 10.1006/niox.1997.0143.CrossRefPubMed
38.
go back to reference Fici GJ, Althaus JS, Hall ED, VonVoigtlander PF: Protective effects of tirilazad mesylate in a cellular model of peroxynitrite toxicity. Res Commun Mol Pathol Pharmacol. 1996, 91: 357-371.PubMed Fici GJ, Althaus JS, Hall ED, VonVoigtlander PF: Protective effects of tirilazad mesylate in a cellular model of peroxynitrite toxicity. Res Commun Mol Pathol Pharmacol. 1996, 91: 357-371.PubMed
39.
go back to reference Tuo J, Wolff SP, Loft S, Poulsen HE: Formation of nitrated and hydroxylated aromatic compounds from benzene and peroxynitrite, a possible mechanism of benzene genotoxicity. Free Radic Res. 1998, 28: 369-375.CrossRefPubMed Tuo J, Wolff SP, Loft S, Poulsen HE: Formation of nitrated and hydroxylated aromatic compounds from benzene and peroxynitrite, a possible mechanism of benzene genotoxicity. Free Radic Res. 1998, 28: 369-375.CrossRefPubMed
40.
go back to reference Bates JN, Baker MT, Guerra Harrison RJ: Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol. 1991, 42: S157-S165. 10.1016/0006-2952(91)90406-U.CrossRefPubMed Bates JN, Baker MT, Guerra Harrison RJ: Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol. 1991, 42: S157-S165. 10.1016/0006-2952(91)90406-U.CrossRefPubMed
41.
go back to reference Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM: Mechanism of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol. 1998, 275: H509-H526.PubMed Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM: Mechanism of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol. 1998, 275: H509-H526.PubMed
42.
go back to reference Graves JE, Lewis SJ, Kooy NW: Peroxynitrite-mediated vasorelaxation: evidence against the formation of circulating S-nitrosothiols. Am J Physiol. 1998, 274: H1001-H1008.PubMed Graves JE, Lewis SJ, Kooy NW: Peroxynitrite-mediated vasorelaxation: evidence against the formation of circulating S-nitrosothiols. Am J Physiol. 1998, 274: H1001-H1008.PubMed
43.
go back to reference Kocic G, Vlahovic P, Pavlovic D, Kocic R, Jevtovic T, Cvetkovic T, Stojanovic I: The possible importance of the cation-binding site for the oxidative modification of liver 5'-nucleotidase. Arch Physiol Biochem. 1998, 106: 91-99. 10.1076/apab.106.2.91.4386.CrossRefPubMed Kocic G, Vlahovic P, Pavlovic D, Kocic R, Jevtovic T, Cvetkovic T, Stojanovic I: The possible importance of the cation-binding site for the oxidative modification of liver 5'-nucleotidase. Arch Physiol Biochem. 1998, 106: 91-99. 10.1076/apab.106.2.91.4386.CrossRefPubMed
44.
go back to reference Bartholeyns J, Peeters-Joris C, Reychler H, Baudhun P: Hepatic nucleases 1. Method for the specific determination and characterization in rat liver. Eur J Biochem. 1975, 57: 205-211.CrossRefPubMed Bartholeyns J, Peeters-Joris C, Reychler H, Baudhun P: Hepatic nucleases 1. Method for the specific determination and characterization in rat liver. Eur J Biochem. 1975, 57: 205-211.CrossRefPubMed
45.
go back to reference Wannemacher RW, Banks WL, Wunner WH: Use of a single tissue extract to determine cellular protein and nucleic acid concentrations and rate of amino acid incorporation. Anal Biochem. 1965, 11: 320-326.CrossRefPubMed Wannemacher RW, Banks WL, Wunner WH: Use of a single tissue extract to determine cellular protein and nucleic acid concentrations and rate of amino acid incorporation. Anal Biochem. 1965, 11: 320-326.CrossRefPubMed
46.
47.
go back to reference Lowry OH, Rosenbrough NJ, Farr AJ, Randall RJ: Protein measurement with the pholin phenol reagent. J Biol Chem. 1951, 193: 265-275.PubMed Lowry OH, Rosenbrough NJ, Farr AJ, Randall RJ: Protein measurement with the pholin phenol reagent. J Biol Chem. 1951, 193: 265-275.PubMed
48.
go back to reference Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER: Age-related changes in oxidized proteins. J Biol Chem. 1987, 262: 5488-5491.PubMed Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER: Age-related changes in oxidized proteins. J Biol Chem. 1987, 262: 5488-5491.PubMed
49.
go back to reference Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER: Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentartion: pH dependence of carbonyl formation, tyrosine nitration and methionine oxidation. Proc Natl Acad Sci USA. 1999, 96: 7809-7814. 10.1073/pnas.96.14.7809.PubMedCentralCrossRefPubMed Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER: Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentartion: pH dependence of carbonyl formation, tyrosine nitration and methionine oxidation. Proc Natl Acad Sci USA. 1999, 96: 7809-7814. 10.1073/pnas.96.14.7809.PubMedCentralCrossRefPubMed
50.
go back to reference Jones DP, McConkey DJ, Nicotera P, Orrenius S: Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem. 1989, 264: 6398-6403.PubMed Jones DP, McConkey DJ, Nicotera P, Orrenius S: Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem. 1989, 264: 6398-6403.PubMed
51.
go back to reference Ellman LG: Tissue sulfhydryl groups. Arch of Biochem Biophys. 1959, 82: 70-77.CrossRef Ellman LG: Tissue sulfhydryl groups. Arch of Biochem Biophys. 1959, 82: 70-77.CrossRef
52.
go back to reference Ohkava H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979, 95: 351-358.CrossRef Ohkava H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979, 95: 351-358.CrossRef
53.
go back to reference Navarro-Gonzales JA, Garcia-Benayas C, Arenos J: Semiautomated measurement of nitrate in biological fluids. Clin Chem. 1998, 44: 679-682. Navarro-Gonzales JA, Garcia-Benayas C, Arenos J: Semiautomated measurement of nitrate in biological fluids. Clin Chem. 1998, 44: 679-682.
Metadata
Title
Sodium nitroprusside and peroxynitrite effect on hepatic DNases: an in vitro and in vivostudy
Authors
Gordana Kocic
Dusica Pavlovic
Radmila Pavlovic
Goran Nikolic
Tatjana Cvetkovic
Ivana Stojanovic
Tatjana Jevtovic
Radivoj Kocic
Dusan Sokolovic
Publication date
01-01-2004
Publisher
BioMed Central
Published in
Comparative Hepatology / Issue 1/2004
Electronic ISSN: 1476-5926
DOI
https://doi.org/10.1186/1476-5926-3-6

Other articles of this Issue 1/2004

Comparative Hepatology 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine