Skip to main content
Top
Published in: BMC Medical Genetics 1/2002

Open Access 01-12-2002 | Research article

SNP analysis of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene by a fluorescence-adapted SSCP method

Authors: Teruaki Tozaki, Nam-Ho Choi-Miura, Matsuo Taniyama, Masahiko Kurosawa, Motowo Tomita

Published in: BMC Medical Genetics | Issue 1/2002

Login to get access

Abstract

Background

Single-nucleotide polymorphisms (SNPs) are considered to be useful polymorphic markers for genetic studies of polygenic traits. Single-stranded conformational polymorphism (SSCP) analysis has been widely applied to detect SNPs, including point mutations in cancer and congenital diseases. In this study, we describe an application of the fluorescent labeling of PCR fragments using a fluorescent-adapted primer for SSCP analysis as a novel method.

Methods

Single-nucleotide polymorphisms (SNPs) of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene were analyzed using a fluorescence-adapted SSCP method. The method was constructed from two procedures: 1) a fluorescent labeling reaction of PCR fragments using fluorescence-adapted primers in a single tube, and 2) electrophoresis on a non-denaturing polyacrylamide gel.

Results

This method was more economical and convenient than the single-stranded conformational polymorphism (SSCP) methods previously reported in the detection of the labeled fragments obtained. In this study, eight SNPs of the IHRP gene were detected by the fluorescence-adapted SSCP. One of the SNPs was a new SNP resulting in an amino acid substitution, while the other SNPs have already been reported in the public databases. Six SNPs of the IHRP were associated with two haplotypes.

Conclusions

The fluorescence-adapted SSCP was useful for detecting and genotyping SNPs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T: Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989, 86: 2766-2770.CrossRefPubMedPubMedCentral Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T: Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989, 86: 2766-2770.CrossRefPubMedPubMedCentral
2.
go back to reference Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T: Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1990, 5: 1037-1043.PubMed Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T: Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1990, 5: 1037-1043.PubMed
3.
go back to reference Suzuki Y, Sekiya T, Hayashi K: Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem. 1991, 192: 82-84.CrossRefPubMed Suzuki Y, Sekiya T, Hayashi K: Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem. 1991, 192: 82-84.CrossRefPubMed
4.
go back to reference Hayashi K: PCR-SSCP: A method for detection of mutations. Genet Anal Tech Appl. 1992, 9: 73-79. 10.1016/1050-3862(92)90001-L.CrossRefPubMed Hayashi K: PCR-SSCP: A method for detection of mutations. Genet Anal Tech Appl. 1992, 9: 73-79. 10.1016/1050-3862(92)90001-L.CrossRefPubMed
5.
go back to reference Makino R, Yazyu H, Kishimoto Y, Sekiya T, Hayashi K: F-SSCP: fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl. 1992, 2: 10-13.CrossRefPubMed Makino R, Yazyu H, Kishimoto Y, Sekiya T, Hayashi K: F-SSCP: fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl. 1992, 2: 10-13.CrossRefPubMed
6.
go back to reference Inazuka M, Tahira T, Hayashi K: One-tube post-PCR fluorescent labeling of DNA fragments. Genome Res. 1996, 6: 551-557.CrossRefPubMed Inazuka M, Tahira T, Hayashi K: One-tube post-PCR fluorescent labeling of DNA fragments. Genome Res. 1996, 6: 551-557.CrossRefPubMed
7.
go back to reference Iwahana H, Fujimura M, Takahashi Y, Iwabuchi T, Yoshimoto K, Itakura M: Multiple fluorescence-based PCR-SSCP analysis using internal fluorescent labeling of PCR products. Biotechniques. 1996, 21: 510-519.PubMed Iwahana H, Fujimura M, Takahashi Y, Iwabuchi T, Yoshimoto K, Itakura M: Multiple fluorescence-based PCR-SSCP analysis using internal fluorescent labeling of PCR products. Biotechniques. 1996, 21: 510-519.PubMed
8.
go back to reference Inazuka M, Wenz HM, Sakabe M, Tahira T, Hayashi K: A streamlined mutation detection system: multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res. 1997, 7: 1094-1103.PubMedPubMedCentral Inazuka M, Wenz HM, Sakabe M, Tahira T, Hayashi K: A streamlined mutation detection system: multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res. 1997, 7: 1094-1103.PubMedPubMedCentral
9.
go back to reference Chiarelli I, Porfirio B, Mattiuz PL, Seri M, Caroli F, Celli I, Romeo G, Volorio S, Zollo M: A method for point mutation analysis that links SSCP and dye primer fluorescent sequencing. Mol Cell Probes. 1998, 12: 125-131. 10.1006/mcpr.1998.0159.CrossRefPubMed Chiarelli I, Porfirio B, Mattiuz PL, Seri M, Caroli F, Celli I, Romeo G, Volorio S, Zollo M: A method for point mutation analysis that links SSCP and dye primer fluorescent sequencing. Mol Cell Probes. 1998, 12: 125-131. 10.1006/mcpr.1998.0159.CrossRefPubMed
10.
go back to reference Esposito DL, Palmirotta R, Veri MC, Mammarella S, D'Amico F, Curia MC, Aceto G, Crognale S, Creati B, Mariani-Costantini R, Battista P, Cama A: Optimized PCR labeling in mutational and microsatellite analysis. Clin Chem. 1998, 44: 1381-1387.PubMed Esposito DL, Palmirotta R, Veri MC, Mammarella S, D'Amico F, Curia MC, Aceto G, Crognale S, Creati B, Mariani-Costantini R, Battista P, Cama A: Optimized PCR labeling in mutational and microsatellite analysis. Clin Chem. 1998, 44: 1381-1387.PubMed
11.
go back to reference Schuelke M: An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000, 18: 233-234. 10.1038/72708.CrossRefPubMed Schuelke M: An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000, 18: 233-234. 10.1038/72708.CrossRefPubMed
12.
go back to reference Tozaki T, Mashima S, Hirota K, Miura N, Choi-Miura NH, Tomita M: Characterization of equine microsatellites and microsatellite-linked repetitive elements (eMLREs) by efficient cloning and genotyping methods. DNA Res. 2001, 8: 33-45.CrossRefPubMed Tozaki T, Mashima S, Hirota K, Miura N, Choi-Miura NH, Tomita M: Characterization of equine microsatellites and microsatellite-linked repetitive elements (eMLREs) by efficient cloning and genotyping methods. DNA Res. 2001, 8: 33-45.CrossRefPubMed
13.
go back to reference Choi-Miura NH, Sano Y, Oda E, Nakano Y, Tobe T, Yanagishita T, Taniyama M, Katagiri T, Tomita M: Purification and characterization of a novel glycoprotein which has significant homology to heavy chains of inter-alpha-trypsin inhibitor family from human plasma. J Biochem (Tokyo). 1995, 117: 400-407.CrossRef Choi-Miura NH, Sano Y, Oda E, Nakano Y, Tobe T, Yanagishita T, Taniyama M, Katagiri T, Tomita M: Purification and characterization of a novel glycoprotein which has significant homology to heavy chains of inter-alpha-trypsin inhibitor family from human plasma. J Biochem (Tokyo). 1995, 117: 400-407.CrossRef
14.
go back to reference Saguchi K, Tobe T, Hashimoto K, Sano Y, Nakano Y, Miura NH, Tomita M: Cloning and characterization of cDNA for inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP), a novel human plasma glycoprotein. J Biochem (Tokyo). 1995, 117: 14-18. Saguchi K, Tobe T, Hashimoto K, Sano Y, Nakano Y, Miura NH, Tomita M: Cloning and characterization of cDNA for inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP), a novel human plasma glycoprotein. J Biochem (Tokyo). 1995, 117: 14-18.
15.
go back to reference Saguchi K, Tobe T, Hashimoto K, Nagasaki Y, Oda E, Nakano Y, Miura NH, Tomita M: Isolation and characterization of the human inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene (ITIHL1). J Biochem (Tokyo). 1996, 119: 898-905.CrossRef Saguchi K, Tobe T, Hashimoto K, Nagasaki Y, Oda E, Nakano Y, Miura NH, Tomita M: Isolation and characterization of the human inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene (ITIHL1). J Biochem (Tokyo). 1996, 119: 898-905.CrossRef
16.
go back to reference Tobe T, Saguchi K, Hashimoto K, Miura NH, Tomita M, Li F, Wang Y, Minoshima S, Shimizu N: Mapping of human inter-alpha-trypsin inhibitor family heavy chain-related protein gene (ITIHL1) to human chromosome 3p21→p14. Cytogenet Cell Genet. 1995, 71: 296-298.CrossRefPubMed Tobe T, Saguchi K, Hashimoto K, Miura NH, Tomita M, Li F, Wang Y, Minoshima S, Shimizu N: Mapping of human inter-alpha-trypsin inhibitor family heavy chain-related protein gene (ITIHL1) to human chromosome 3p21→p14. Cytogenet Cell Genet. 1995, 71: 296-298.CrossRefPubMed
17.
go back to reference Choi-Miura NH, Takahashi K, Yoda M, Saito K, Hori M, Ozaki H, Mazda T, Tomita M: The novel acute phase protein, IHRP, inhibits actin polymerization and phagocytosis of polymorphonuclear cells. Inflamm Res. 2000, 49: 305-310. 10.1007/s000110050018.CrossRefPubMed Choi-Miura NH, Takahashi K, Yoda M, Saito K, Hori M, Ozaki H, Mazda T, Tomita M: The novel acute phase protein, IHRP, inhibits actin polymerization and phagocytosis of polymorphonuclear cells. Inflamm Res. 2000, 49: 305-310. 10.1007/s000110050018.CrossRefPubMed
18.
go back to reference Choi-Miura NH: Quantitative measurement of the novel human plasma protein, IHRP, by sandwich ELISA. Biol Pharm Bull. 2001, 24: 214-217. 10.1248/bpb.24.214.CrossRefPubMed Choi-Miura NH: Quantitative measurement of the novel human plasma protein, IHRP, by sandwich ELISA. Biol Pharm Bull. 2001, 24: 214-217. 10.1248/bpb.24.214.CrossRefPubMed
20.
go back to reference Hayashi K: Recent enhancements in SSCP. Genet Anal. 1999, 14: 193-196. 10.1016/S1050-3862(98)00017-5.CrossRefPubMed Hayashi K: Recent enhancements in SSCP. Genet Anal. 1999, 14: 193-196. 10.1016/S1050-3862(98)00017-5.CrossRefPubMed
21.
go back to reference Sasaki T, Tahira T, Suzuki A, Higasa K, Kukita Y, Baba S, Hayashi K: Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet. 2001, 68: 214-218. 10.1086/316928.CrossRefPubMed Sasaki T, Tahira T, Suzuki A, Higasa K, Kukita Y, Baba S, Hayashi K: Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet. 2001, 68: 214-218. 10.1086/316928.CrossRefPubMed
Metadata
Title
SNP analysis of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene by a fluorescence-adapted SSCP method
Authors
Teruaki Tozaki
Nam-Ho Choi-Miura
Matsuo Taniyama
Masahiko Kurosawa
Motowo Tomita
Publication date
01-12-2002
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2002
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-3-6

Other articles of this Issue 1/2002

BMC Medical Genetics 1/2002 Go to the issue