Skip to main content
Top
Published in: Journal of Medical Systems 2/2017

01-02-2017 | EDUCATION & TRAINING

Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery

Authors: Xinyao Sun, Simon Byrns, Irene Cheng, Bin Zheng, Anup Basu

Published in: Journal of Medical Systems | Issue 2/2017

Login to get access

Abstract

We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.
Literature
1.
go back to reference Reznick, R., Regehr, G., MacRae, H., Martin, J., McCulloch, W., Testing technical skill via an innovative “bench station” examination. Am. J. Surg. 173(3):226–230, 1997.CrossRefPubMed Reznick, R., Regehr, G., MacRae, H., Martin, J., McCulloch, W., Testing technical skill via an innovative “bench station” examination. Am. J. Surg. 173(3):226–230, 1997.CrossRefPubMed
2.
go back to reference Martin, J. A., Regehr, G., Reznick, R., MacRae, H., Murnaghan, J., Hutchison, C., Brown, M., Objective structured assessment of technical skill (osats) for surgical residents. Br. J. Surg. 84(2):273–278, 1997.CrossRefPubMed Martin, J. A., Regehr, G., Reznick, R., MacRae, H., Murnaghan, J., Hutchison, C., Brown, M., Objective structured assessment of technical skill (osats) for surgical residents. Br. J. Surg. 84(2):273–278, 1997.CrossRefPubMed
3.
go back to reference Jin, G. H., Lee, S. B., Lee, T. S., Context awareness of human motion states using accelerometer. J. Med. Syst. 32:93–100, 2008.CrossRefPubMed Jin, G. H., Lee, S. B., Lee, T. S., Context awareness of human motion states using accelerometer. J. Med. Syst. 32:93–100, 2008.CrossRefPubMed
4.
go back to reference Arif, M., Bilal, M., Kattan, A., Ahamed, S. I., Better physical activity classification using smartphone acceleration sensor. J. Med. Syst. 38:1–10, 2014.CrossRef Arif, M., Bilal, M., Kattan, A., Ahamed, S. I., Better physical activity classification using smartphone acceleration sensor. J. Med. Syst. 38:1–10, 2014.CrossRef
5.
go back to reference Sakar, C. O., and Kursun, O., Telediagnosis of parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4):591–599, 2010.CrossRefPubMed Sakar, C. O., and Kursun, O., Telediagnosis of parkinson’s disease using measurements of dysphonia. J. Med. Syst. 34(4):591–599, 2010.CrossRefPubMed
6.
go back to reference Ozcift, A., Svm feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of parkinson disease. J. Med. Syst. 36(4):2142–2147, 2012. Ozcift, A., Svm feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of parkinson disease. J. Med. Syst. 36(4):2142–2147, 2012.
7.
go back to reference Choi, K.-S., Chan, S.-H., Pang, W.-M., Virtual suturing simulation based on commodity physics engine for medical learning. J. Med. Syst. 36:1781–1793, 2012.CrossRefPubMed Choi, K.-S., Chan, S.-H., Pang, W.-M., Virtual suturing simulation based on commodity physics engine for medical learning. J. Med. Syst. 36:1781–1793, 2012.CrossRefPubMed
9.
go back to reference Rosenbaum, D. A., Human motor control: Academic Press, 2009. Rosenbaum, D. A., Human motor control: Academic Press, 2009.
10.
go back to reference Stergiou, N., Harbourne, R. T., Cavanaugh, J. T., Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30(3):120–129, 2006.CrossRefPubMed Stergiou, N., Harbourne, R. T., Cavanaugh, J. T., Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30(3):120–129, 2006.CrossRefPubMed
11.
go back to reference Reiley, C. E., Lin, H. C., Yuh, D. D., Hager, G. D., Review of methods for objective surgical skill evaluation. Surg. Endosc. 25(2):356–366, 2011.CrossRefPubMed Reiley, C. E., Lin, H. C., Yuh, D. D., Hager, G. D., Review of methods for objective surgical skill evaluation. Surg. Endosc. 25(2):356–366, 2011.CrossRefPubMed
12.
go back to reference Datta, V., Mackay, S., Mandalia, M., Darzi, A., The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J. Am. Coll. Surg. 193(5):479–485, 2001.CrossRefPubMed Datta, V., Mackay, S., Mandalia, M., Darzi, A., The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J. Am. Coll. Surg. 193(5):479–485, 2001.CrossRefPubMed
13.
go back to reference Glarner, C. E., Hu, Y.-Y., Chen, C.-H., Radwin, R. G., Zhao, Q., Craven, M. W., Wiegmann, D. A., Pugh, C. M., Carty, M. J., Greenberg, C. C., Quantifying technical skills during open operations using video-based motion analysis. Surgery 156(3):729–734, 2014.CrossRefPubMedPubMedCentral Glarner, C. E., Hu, Y.-Y., Chen, C.-H., Radwin, R. G., Zhao, Q., Craven, M. W., Wiegmann, D. A., Pugh, C. M., Carty, M. J., Greenberg, C. C., Quantifying technical skills during open operations using video-based motion analysis. Surgery 156(3):729–734, 2014.CrossRefPubMedPubMedCentral
14.
go back to reference Radwin, R. G.: Automated video exposure assessment of repetitive motion. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 55, pp. 995–996. SAGE Publications (2011) Radwin, R. G.: Automated video exposure assessment of repetitive motion. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 55, pp. 995–996. SAGE Publications (2011)
15.
go back to reference Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., Sodnik, J., An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors 14(2):3702–3720, 2014.CrossRefPubMedPubMedCentral Guna, J., Jakus, G., Pogačnik, M., Tomažič, S., Sodnik, J., An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking. Sensors 14(2):3702–3720, 2014.CrossRefPubMedPubMedCentral
16.
go back to reference Rosen, J., Brown, J. D., Chang, L., Sinanan, M. N., Hannaford, B., Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. IEEE Trans. Biomed. Eng. 53(3):399–413, 2006.CrossRefPubMed Rosen, J., Brown, J. D., Chang, L., Sinanan, M. N., Hannaford, B., Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. IEEE Trans. Biomed. Eng. 53(3):399–413, 2006.CrossRefPubMed
17.
go back to reference Murphy, T. E., Vignes, C. M., Yuh, D. D., Okamura, A. M., Automatic motion recognition and skill evaluation for dynamic tasks. Proc. Euro. Haptics,363, 2003. Murphy, T. E., Vignes, C. M., Yuh, D. D., Okamura, A. M., Automatic motion recognition and skill evaluation for dynamic tasks. Proc. Euro. Haptics,363, 2003.
18.
go back to reference Leong, J. J. H., Nicolaou, M., Atallah, L., Mylonas, G. P., Darzi, A. W., Yang, G. -Z.: Hmm assessment of quality of movement trajectory in laparoscopic surgery. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, pp. 752–759. Springer (2006) Leong, J. J. H., Nicolaou, M., Atallah, L., Mylonas, G. P., Darzi, A. W., Yang, G. -Z.: Hmm assessment of quality of movement trajectory in laparoscopic surgery. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, pp. 752–759. Springer (2006)
19.
go back to reference Gorman, P., Krummel, T., Webster, R., Smith, M., Hutchens, D., A prototype haptic lumbar puncture simulator. Stud. Health Technol. Inform.,106–109, 2000. Gorman, P., Krummel, T., Webster, R., Smith, M., Hutchens, D., A prototype haptic lumbar puncture simulator. Stud. Health Technol. Inform.,106–109, 2000.
20.
go back to reference Megali, G., Sinigaglia, S., Tonet, O., Dario, P., Modelling and evaluation of surgical performance using hidden Markov models. IEEE Trans. Biomed. Eng. 53(10):1911–1919, 2006.CrossRefPubMed Megali, G., Sinigaglia, S., Tonet, O., Dario, P., Modelling and evaluation of surgical performance using hidden Markov models. IEEE Trans. Biomed. Eng. 53(10):1911–1919, 2006.CrossRefPubMed
21.
go back to reference Li, Z., Wei, Z., Yue, Y., Wang, H., Jia, W., Burke, L. E., Baranowski, T., Sun, M., An adaptive hidden markov model for activity recognition based on a wearable multi-sensor device. J. Med. Syst. 39(5): 57, 2015.CrossRefPubMed Li, Z., Wei, Z., Yue, Y., Wang, H., Jia, W., Burke, L. E., Baranowski, T., Sun, M., An adaptive hidden markov model for activity recognition based on a wearable multi-sensor device. J. Med. Syst. 39(5): 57, 2015.CrossRefPubMed
22.
go back to reference Rabiner, L. R., A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2):257–286, 1989.CrossRef Rabiner, L. R., A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77(2):257–286, 1989.CrossRef
23.
go back to reference Loukas, C., and Georgiou, E., Multivariate autoregressive modeling of hand kinematics for laparoscopic skills assessment of surgical trainees. IEEE Trans. Biomed. Eng. 58(11):3289–3297, 2011.CrossRefPubMed Loukas, C., and Georgiou, E., Multivariate autoregressive modeling of hand kinematics for laparoscopic skills assessment of surgical trainees. IEEE Trans. Biomed. Eng. 58(11):3289–3297, 2011.CrossRefPubMed
25.
go back to reference Reiley, C. E., and Hager, G. D.: Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2009, pp. 435–442. Springer (2009) Reiley, C. E., and Hager, G. D.: Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2009, pp. 435–442. Springer (2009)
Metadata
Title
Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery
Authors
Xinyao Sun
Simon Byrns
Irene Cheng
Bin Zheng
Anup Basu
Publication date
01-02-2017
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 2/2017
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0665-4

Other articles of this Issue 2/2017

Journal of Medical Systems 2/2017 Go to the issue