Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Review

Small RNA modifications: regulatory molecules and potential applications

Authors: Qunli Xiong, Yaguang Zhang

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Literature
1.
go back to reference Courtney DG, Tsai K, Bogerd HP, Kennedy EM, Law BA, Emery A, et al. Epitranscriptomic addition of m(5)C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe. 2019;26(2):217.PubMedPubMedCentralCrossRef Courtney DG, Tsai K, Bogerd HP, Kennedy EM, Law BA, Emery A, et al. Epitranscriptomic addition of m(5)C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe. 2019;26(2):217.PubMedPubMedCentralCrossRef
2.
go back to reference Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. Wiley Interdisciplinary Reviews-RNA. 2022;13(4). Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. Wiley Interdisciplinary Reviews-RNA. 2022;13(4).
3.
go back to reference Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, et al. Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71(6):986.PubMedPubMedCentralCrossRef Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, et al. Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71(6):986.PubMedPubMedCentralCrossRef
4.
go back to reference Lavi U, Fernandez-Munoz R, Darnell JE Jr. Content of N-6 methyl adenylic acid in heterogeneous nuclear and messenger RNA of HeLa cells. Nucleic Acids Res. 1977;4(1):63–9.PubMedPubMedCentralCrossRef Lavi U, Fernandez-Munoz R, Darnell JE Jr. Content of N-6 methyl adenylic acid in heterogeneous nuclear and messenger RNA of HeLa cells. Nucleic Acids Res. 1977;4(1):63–9.PubMedPubMedCentralCrossRef
5.
go back to reference Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50(D1):D231–5.PubMedCrossRef Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50(D1):D231–5.PubMedCrossRef
6.
go back to reference Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer. 2021;20(1). Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer. 2021;20(1).
7.
go back to reference Shi HL, Wei JB, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74(4):640–50.PubMedPubMedCentralCrossRef Shi HL, Wei JB, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74(4):640–50.PubMedPubMedCentralCrossRef
8.
go back to reference Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdisciplinary Reviews-RNA. 2022;13(2). Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdisciplinary Reviews-RNA. 2022;13(2).
9.
go back to reference Qu JW, Yan HM, Hou YF, Cao W, Liu Y, Zhang EF, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022;15(1). Qu JW, Yan HM, Hou YF, Cao W, Liu Y, Zhang EF, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol. 2022;15(1).
10.
go back to reference Grosshans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008;451(7177):414–6.PubMedCrossRef Grosshans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008;451(7177):414–6.PubMedCrossRef
13.
go back to reference Xiong Q, Zhang Y, Li J, Zhu Q. Small non-coding RNAs in human cancer. Genes (Basel). 2022;13(11). Xiong Q, Zhang Y, Li J, Zhu Q. Small non-coding RNAs in human cancer. Genes (Basel). 2022;13(11).
15.
16.
go back to reference Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.PubMedCrossRef Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.PubMedCrossRef
17.
go back to reference Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.PubMedCrossRef Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.PubMedCrossRef
18.
go back to reference Czech B, Munafo M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, et al. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet. 2018;52:131–57.PubMedCrossRef Czech B, Munafo M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, et al. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet. 2018;52:131–57.PubMedCrossRef
19.
go back to reference Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.PubMedCrossRef Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.PubMedCrossRef
21.
go back to reference Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 2015;16(2):98–112.PubMedCrossRef Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 2015;16(2):98–112.PubMedCrossRef
23.
go back to reference Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89:359–88.PubMedCrossRef Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89:359–88.PubMedCrossRef
25.
go back to reference Barciszewska MZ, Szymanski M, Erdmann VA, Barciszewski J. 5S ribosomal RNA. Biomacromol. 2000;1(3):297–302.CrossRef Barciszewska MZ, Szymanski M, Erdmann VA, Barciszewski J. 5S ribosomal RNA. Biomacromol. 2000;1(3):297–302.CrossRef
26.
go back to reference Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci. 2021;78(4):1487–99.PubMedCrossRef Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci. 2021;78(4):1487–99.PubMedCrossRef
27.
go back to reference Horos R, Buscher M, Kleinendorst R, Alleaume AM, Tarafder AK, Schwarzl T, et al. The small non-coding vault RNA1–1 acts as a riboregulator of autophagy. Cell. 2019;176(5):1054–6712.PubMedCrossRef Horos R, Buscher M, Kleinendorst R, Alleaume AM, Tarafder AK, Schwarzl T, et al. The small non-coding vault RNA1–1 acts as a riboregulator of autophagy. Cell. 2019;176(5):1054–6712.PubMedCrossRef
28.
go back to reference Guglas K, Kolodziejczak I, Kolenda T, Kopczynska M, Teresiak A, Sobocinska J, et al. YRNAs and YRNA-derived fragments as new players in cancer research and their potential role in diagnostics. Int J Mol Sci. 2020;21(16). Guglas K, Kolodziejczak I, Kolenda T, Kopczynska M, Teresiak A, Sobocinska J, et al. YRNAs and YRNA-derived fragments as new players in cancer research and their potential role in diagnostics. Int J Mol Sci. 2020;21(16).
30.
31.
go back to reference Xu D, Qiao D, Lei Y, Zhang C, Bu Y, Zhang Y. Transfer RNA-derived small RNAs (tsRNAs): versatile regulators in cancer. Cancer Lett. 2022;546: 215842.PubMedCrossRef Xu D, Qiao D, Lei Y, Zhang C, Bu Y, Zhang Y. Transfer RNA-derived small RNAs (tsRNAs): versatile regulators in cancer. Cancer Lett. 2022;546: 215842.PubMedCrossRef
32.
go back to reference Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, et al. YRNAs and YRNA-derived fragments as new players in cancer research and their potential role in diagnostics. Int J Mol Sci. 2020;21(16). Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, et al. YRNAs and YRNA-derived fragments as new players in cancer research and their potential role in diagnostics. Int J Mol Sci. 2020;21(16).
33.
go back to reference Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T. Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett. 2012;586(8):1226–30.PubMedCrossRef Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T. Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett. 2012;586(8):1226–30.PubMedCrossRef
34.
go back to reference Xia L, Guo H, Wu X, Xu Y, Zhao P, Yan B, et al. Human circulating small non-coding RNA signature as a non-invasive biomarker in clinical diagnosis of acute myeloid leukaemia. Theranostics. 2023;13(4):1289–301.PubMedPubMedCentralCrossRef Xia L, Guo H, Wu X, Xu Y, Zhao P, Yan B, et al. Human circulating small non-coding RNA signature as a non-invasive biomarker in clinical diagnosis of acute myeloid leukaemia. Theranostics. 2023;13(4):1289–301.PubMedPubMedCentralCrossRef
35.
go back to reference Persson H, Kvist A, Vallon-Christersson J, Medstrand P, Borg A, Rovira C. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol. 2009;11(10):1268–71.PubMedCrossRef Persson H, Kvist A, Vallon-Christersson J, Medstrand P, Borg A, Rovira C. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol. 2009;11(10):1268–71.PubMedCrossRef
36.
go back to reference Meng C, Wei Z, Zhang Y, Yan L, He H, Zhang L, et al. Regulation of cytochrome P450 3A4 by small vault RNAb derived from the non-coding vault RNA1 of multidrug resistance-linked vault particle. Mol Med Rep. 2016;14(1):387–93.PubMedCrossRef Meng C, Wei Z, Zhang Y, Yan L, He H, Zhang L, et al. Regulation of cytochrome P450 3A4 by small vault RNAb derived from the non-coding vault RNA1 of multidrug resistance-linked vault particle. Mol Med Rep. 2016;14(1):387–93.PubMedCrossRef
37.
go back to reference Chu C, Yu L, Wu B, Ma L, Gou LT, He M, et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation. J Mol Cell Biol. 2017;9(3):256–9.PubMedCrossRef Chu C, Yu L, Wu B, Ma L, Gou LT, He M, et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation. J Mol Cell Biol. 2017;9(3):256–9.PubMedCrossRef
38.
go back to reference Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. BioEssays. 2013;35(1):46–54.PubMedCrossRef Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. BioEssays. 2013;35(1):46–54.PubMedCrossRef
40.
go back to reference Desrosiers RC, Friderici KH, Rottman FM. Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5’ terminus. Biochemistry. 1975;14(20):4367–74.PubMedCrossRef Desrosiers RC, Friderici KH, Rottman FM. Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5’ terminus. Biochemistry. 1975;14(20):4367–74.PubMedCrossRef
41.
go back to reference Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.PubMedPubMedCentralCrossRef Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.PubMedPubMedCentralCrossRef
42.
go back to reference Chenkiang S, Nevins JR, Darnell JE. N-6-methyl-adenosine in adenovirus type-2 nuclear-RNA is conserved in the formation of messenger-RNA. J Mol Biol. 1979;135(3):733–52.PubMedCrossRef Chenkiang S, Nevins JR, Darnell JE. N-6-methyl-adenosine in adenovirus type-2 nuclear-RNA is conserved in the formation of messenger-RNA. J Mol Biol. 1979;135(3):733–52.PubMedCrossRef
44.
go back to reference Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer. Mol Cancer. 2020;19(1). Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer. Mol Cancer. 2020;19(1).
45.
go back to reference Schumann U, Shafik A, Preiss T. METTL3 gains R/W access to the epitranscriptome. Mol Cell. 2016;62(3):323–4.PubMedCrossRef Schumann U, Shafik A, Preiss T. METTL3 gains R/W access to the epitranscriptome. Mol Cell. 2016;62(3):323–4.PubMedCrossRef
46.
go back to reference Liu JZ, Yue YN, Han DL, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N-6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.PubMedCrossRef Liu JZ, Yue YN, Han DL, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N-6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.PubMedCrossRef
47.
go back to reference Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.PubMedPubMedCentralCrossRef Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.PubMedPubMedCentralCrossRef
48.
go back to reference Pendleton KE, Chen BB, Liu KQ, Hunter OV, Xie Y, Tu BP, et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824.PubMedPubMedCentralCrossRef Pendleton KE, Chen BB, Liu KQ, Hunter OV, Xie Y, Tu BP, et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824.PubMedPubMedCentralCrossRef
50.
go back to reference Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32(5–6):415–29.PubMedPubMedCentralCrossRef Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32(5–6):415–29.PubMedPubMedCentralCrossRef
51.
go back to reference Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.PubMedPubMedCentralCrossRef
52.
go back to reference Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.PubMedCrossRef
53.
go back to reference Li F, Zhao D, Wu J, Shi Y. Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Res. 2014;24(12):1490–2.PubMedPubMedCentralCrossRef Li F, Zhao D, Wu J, Shi Y. Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Res. 2014;24(12):1490–2.PubMedPubMedCentralCrossRef
54.
go back to reference Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 2014;10(11):927–9.PubMedCrossRef Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 2014;10(11):927–9.PubMedCrossRef
55.
go back to reference Alarcon CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162(6):1299–308.PubMedPubMedCentralCrossRef Alarcon CR, Goodarzi H, Lee H, Liu XH, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015;162(6):1299–308.PubMedPubMedCentralCrossRef
56.
go back to reference Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18.
59.
go back to reference Zhu H, Sun B, Zhu L, Zou G, Shen Q. N6-methyladenosine induced miR-34a-5p promotes TNF-alpha-induced nucleus pulposus cell senescence by targeting SIRT1. Front Cell Dev Biol. 2021;9: 642437.PubMedPubMedCentralCrossRef Zhu H, Sun B, Zhu L, Zou G, Shen Q. N6-methyladenosine induced miR-34a-5p promotes TNF-alpha-induced nucleus pulposus cell senescence by targeting SIRT1. Front Cell Dev Biol. 2021;9: 642437.PubMedPubMedCentralCrossRef
60.
go back to reference Chen ZY, Chen X, Lei TY, Gu Y, Gu JY, Huang JL, et al. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol Ther. 2020;28(6):1479–93.PubMedPubMedCentralCrossRef Chen ZY, Chen X, Lei TY, Gu Y, Gu JY, Huang JL, et al. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol Ther. 2020;28(6):1479–93.PubMedPubMedCentralCrossRef
61.
go back to reference Sun WQ, Li Y, Ma DY, Liu Y, Xu Q, Cheng DM, et al. ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cell Mol Biol Lett. 2022;27(1). Sun WQ, Li Y, Ma DY, Liu Y, Xu Q, Cheng DM, et al. ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cell Mol Biol Lett. 2022;27(1).
62.
go back to reference Wang HS, Deng QQ, Lv ZY, Ling YY, Hou X, Chen ZJ, et al. N6-methyladenosine induced miR-143–3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019;18(1). Wang HS, Deng QQ, Lv ZY, Ling YY, Hou X, Chen ZJ, et al. N6-methyladenosine induced miR-143–3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019;18(1).
63.
go back to reference Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B. N6-adenosine methylation in MiRNAs. Plos One. 2015;10(2). Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B. N6-adenosine methylation in MiRNAs. Plos One. 2015;10(2).
64.
go back to reference Yuan S, Tang H, Xing JY, Fan XQ, Cai XY, Li Q, et al. Methylation by NSun2 represses the levels and function of MicroRNA 125b. Mol Cell Biol. 2014;34(19):3630–41.PubMedPubMedCentralCrossRef Yuan S, Tang H, Xing JY, Fan XQ, Cai XY, Li Q, et al. Methylation by NSun2 represses the levels and function of MicroRNA 125b. Mol Cell Biol. 2014;34(19):3630–41.PubMedPubMedCentralCrossRef
65.
go back to reference Yang L, Ma YM, Han WX, Li WW, Cui L, Zhao XH, et al. Proteinase-activated receptor 2 promotes cancer cell migration through RNA methylation-mediated repression of miR-125b. J Biol Chem. 2015;290(44):26627–37.PubMedPubMedCentralCrossRef Yang L, Ma YM, Han WX, Li WW, Cui L, Zhao XH, et al. Proteinase-activated receptor 2 promotes cancer cell migration through RNA methylation-mediated repression of miR-125b. J Biol Chem. 2015;290(44):26627–37.PubMedPubMedCentralCrossRef
66.
go back to reference Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep. 2019;9. Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep. 2019;9.
67.
go back to reference Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36(3):177–88.PubMedCrossRef Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36(3):177–88.PubMedCrossRef
68.
go back to reference Chen Y, Lin Y, Shu Y, He J, Gao W. Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer. 2020;19(1):94.PubMedPubMedCentralCrossRef Chen Y, Lin Y, Shu Y, He J, Gao W. Interaction between N(6)-methyladenosine (m(6)A) modification and noncoding RNAs in cancer. Mol Cancer. 2020;19(1):94.PubMedPubMedCentralCrossRef
69.
go back to reference Konno M, Koseki J, Asai A, Yamagata A, Shimamura T, Motooka D, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun. 2019;10. Konno M, Koseki J, Asai A, Yamagata A, Shimamura T, Motooka D, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun. 2019;10.
70.
go back to reference Zhao CP, Ling XL, Xia YX, Yan BX, Guan QL. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m(6)A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef Zhao CP, Ling XL, Xia YX, Yan BX, Guan QL. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m(6)A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef
71.
go back to reference Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 2020;40(10):484–500.PubMedCrossRef Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 2020;40(10):484–500.PubMedCrossRef
72.
go back to reference Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021;53(1):91–102.PubMedPubMedCentralCrossRef Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021;53(1):91–102.PubMedPubMedCentralCrossRef
73.
go back to reference Yue Y, Deng P, Xiao H, Tan MD, Wang H, Tian L, et al. N6-methyladenosine-mediated downregulation of miR-374c-5p promotes cadmium-induced cell proliferation and metastasis by targeting GRM3 in breast cancer cells. Ecotoxicol Environ Saf. 2022;229. Yue Y, Deng P, Xiao H, Tan MD, Wang H, Tian L, et al. N6-methyladenosine-mediated downregulation of miR-374c-5p promotes cadmium-induced cell proliferation and metastasis by targeting GRM3 in breast cancer cells. Ecotoxicol Environ Saf. 2022;229.
74.
go back to reference Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38(1):393.PubMedPubMedCentralCrossRef Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38(1):393.PubMedPubMedCentralCrossRef
75.
go back to reference Li K, Gao S, Ma L, Sun Y, Peng ZY, Wu J, et al. Stimulation of let-7 maturation by metformin improved the response to tyrosine kinase inhibitor therapy in an m6a dependent manner. Front Oncol. 2022;11. Li K, Gao S, Ma L, Sun Y, Peng ZY, Wu J, et al. Stimulation of let-7 maturation by metformin improved the response to tyrosine kinase inhibitor therapy in an m6a dependent manner. Front Oncol. 2022;11.
76.
go back to reference Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019;18(1):181.PubMedPubMedCentralCrossRef Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019;18(1):181.PubMedPubMedCentralCrossRef
77.
go back to reference Rong L, Xu Y, Zhang K, Jin L, Liu X. HNRNPA2B1 inhibited SFRP2 and activated Wnt-beta/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract. 2022;233: 153794.PubMedCrossRef Rong L, Xu Y, Zhang K, Jin L, Liu X. HNRNPA2B1 inhibited SFRP2 and activated Wnt-beta/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract. 2022;233: 153794.PubMedCrossRef
78.
go back to reference Li SS, Lu XX, Zheng DY, Chen WZ, Li YZ, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol. 2022;148(12):3485–99.PubMedCrossRef Li SS, Lu XX, Zheng DY, Chen WZ, Li YZ, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol. 2022;148(12):3485–99.PubMedCrossRef
79.
go back to reference Ling Q, Wu SY, Liao XZ, Liu CY, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486–5p/RAP1-NF-kappa B axis. BMC Cancer. 2022;22(1). Ling Q, Wu SY, Liao XZ, Liu CY, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486–5p/RAP1-NF-kappa B axis. BMC Cancer. 2022;22(1).
80.
go back to reference Zhou GW, Yan KQ, Liu JK, Gao LJ, Jiang XZ, Fan YD. FTO promotes tumour proliferation in bladder cancer via the FTO/miR-576/CDK6 axis in an m6A-dependent manner. Cell Death Discovery. 2021;7(1). Zhou GW, Yan KQ, Liu JK, Gao LJ, Jiang XZ, Fan YD. FTO promotes tumour proliferation in bladder cancer via the FTO/miR-576/CDK6 axis in an m6A-dependent manner. Cell Death Discovery. 2021;7(1).
81.
go back to reference Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.PubMedPubMedCentralCrossRef Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.PubMedPubMedCentralCrossRef
82.
go back to reference Yan RC, Dai WW, Wu RX, Huang HB, Shu MF. Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 2022;534. Yan RC, Dai WW, Wu RX, Huang HB, Shu MF. Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 2022;534.
83.
go back to reference Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–43.PubMedCrossRef Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–43.PubMedCrossRef
84.
85.
go back to reference Chen P, Li S, Zhang K, Zhao R, Cui J, Zhou W, et al. N(6)-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene. 2021;40(37):5600–12.PubMedCrossRef Chen P, Li S, Zhang K, Zhao R, Cui J, Zhou W, et al. N(6)-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene. 2021;40(37):5600–12.PubMedCrossRef
86.
go back to reference Liu Z, Wu K, Gu S, Wang W, Xie S, Lu T, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11(9): e545.PubMedPubMedCentralCrossRef Liu Z, Wu K, Gu S, Wang W, Xie S, Lu T, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11(9): e545.PubMedPubMedCentralCrossRef
87.
go back to reference Lin RR, Zhan M, Yang LH, Wang H, Shen H, Huang S, et al. Deoxycholic acid modulates the progression of gallbladder cancer through N-6-methyladenosine-dependent microRNA maturation. Oncogene. 2020;39(26):4983–5000.PubMedPubMedCentralCrossRef Lin RR, Zhan M, Yang LH, Wang H, Shen H, Huang S, et al. Deoxycholic acid modulates the progression of gallbladder cancer through N-6-methyladenosine-dependent microRNA maturation. Oncogene. 2020;39(26):4983–5000.PubMedPubMedCentralCrossRef
88.
go back to reference Gong YQ, Jiang QS, Liu LJ, Liao QY, Yu J, Xiang Z, et al. METTL3-mediated m6A modification promotes processing and maturation of pri-miRNA-19a to facilitate nasopharyngeal carcinoma cell proliferation and invasion. Physiol Genomics. 2022;54(9):337–49.PubMedCrossRef Gong YQ, Jiang QS, Liu LJ, Liao QY, Yu J, Xiang Z, et al. METTL3-mediated m6A modification promotes processing and maturation of pri-miRNA-19a to facilitate nasopharyngeal carcinoma cell proliferation and invasion. Physiol Genomics. 2022;54(9):337–49.PubMedCrossRef
89.
go back to reference Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, et al. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021;28(3–4):335–49.PubMedCrossRef Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, et al. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021;28(3–4):335–49.PubMedCrossRef
90.
go back to reference Bi XH, Lv X, Liu DJ, Guo HT, Yao G, Wang LJ, et al. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discovery. 2021;7(1). Bi XH, Lv X, Liu DJ, Guo HT, Yao G, Wang LJ, et al. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discovery. 2021;7(1).
91.
go back to reference Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10(1):1858.PubMedPubMedCentralCrossRef Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10(1):1858.PubMedPubMedCentralCrossRef
92.
go back to reference Hou Y, Zhang Q, Pang W, Hou L, Liang Y, Han X, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 2021;28(11):3105–24.PubMedPubMedCentralCrossRef Hou Y, Zhang Q, Pang W, Hou L, Liang Y, Han X, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 2021;28(11):3105–24.PubMedPubMedCentralCrossRef
93.
go back to reference Lin S, Zhu Y, Ji C, Yu W, Zhang C, Tan L, et al. METTL3-induced miR-222-3p upregulation inhibits STK4 and promotes the malignant behaviors of thyroid carcinoma cells. J Clin Endocrinol Metab. 2022;107(2):474–90.PubMedCrossRef Lin S, Zhu Y, Ji C, Yu W, Zhang C, Tan L, et al. METTL3-induced miR-222-3p upregulation inhibits STK4 and promotes the malignant behaviors of thyroid carcinoma cells. J Clin Endocrinol Metab. 2022;107(2):474–90.PubMedCrossRef
94.
go back to reference Wang P, Wang Z, Zhang M, Wu Q, Shi F, Yuan S. KIAA1429 and ALKBH5 oppositely influence aortic dissection progression via regulating the maturation of Pri-miR-143-3p in an m6A-dependent manner. Front Cell Dev Biol. 2021;9: 668377.PubMedPubMedCentralCrossRef Wang P, Wang Z, Zhang M, Wu Q, Shi F, Yuan S. KIAA1429 and ALKBH5 oppositely influence aortic dissection progression via regulating the maturation of Pri-miR-143-3p in an m6A-dependent manner. Front Cell Dev Biol. 2021;9: 668377.PubMedPubMedCentralCrossRef
95.
go back to reference Zhang BY, Han L, Tang YF, Zhang GX, Fan XL, Zhang JJ, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 2020;24(12):7015–23.PubMed Zhang BY, Han L, Tang YF, Zhang GX, Fan XL, Zhang JJ, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 2020;24(12):7015–23.PubMed
96.
go back to reference Zha X, Xi XT, Fan XY, Ma MJ, Zhang YP, Yang YN. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging-Us. 2020;12(9):8137–50.CrossRef Zha X, Xi XT, Fan XY, Ma MJ, Zhang YP, Yang YN. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging-Us. 2020;12(9):8137–50.CrossRef
97.
go back to reference Xia H, Wu Y, Zhao J, Li W, Lu L, Ma H, et al. The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol Toxicol. 2022;38(1):167–83.PubMedCrossRef Xia H, Wu Y, Zhao J, Li W, Lu L, Ma H, et al. The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol Toxicol. 2022;38(1):167–83.PubMedCrossRef
98.
go back to reference Li X, Xiong WQ, Long XF, Dai X, Peng Y, Xu Y, et al. Inhibition of METTL3/m(6)A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis. Biol Reprod. 2021;105(5):1221–33.PubMedCrossRef Li X, Xiong WQ, Long XF, Dai X, Peng Y, Xu Y, et al. Inhibition of METTL3/m(6)A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis. Biol Reprod. 2021;105(5):1221–33.PubMedCrossRef
99.
go back to reference Zhang CJ, Wang Y, Peng YN, Xu HJ, Zhou XL. METTL3 regulates inflammatory pain by modulating m(6)A-dependent pri-miR-365-3p processing. FASEB J. 2020;34(1):122–32.PubMedCrossRef Zhang CJ, Wang Y, Peng YN, Xu HJ, Zhou XL. METTL3 regulates inflammatory pain by modulating m(6)A-dependent pri-miR-365-3p processing. FASEB J. 2020;34(1):122–32.PubMedCrossRef
100.
go back to reference Zhu H, Sun B, Zhu L, Zou GY, Shen Q. N6-methyladenosine induced miR-34a-5p promotes TNF-alpha-induced nucleus pulposus cell senescence by targeting SIRT1. Front Cell Dev Biol. 2021;9. Zhu H, Sun B, Zhu L, Zou GY, Shen Q. N6-methyladenosine induced miR-34a-5p promotes TNF-alpha-induced nucleus pulposus cell senescence by targeting SIRT1. Front Cell Dev Biol. 2021;9.
101.
go back to reference Zhang R, Qu YY, Ji ZJ, Hao CS, Su YM, Yao YY, et al. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett. 2022;27(1). Zhang R, Qu YY, Ji ZJ, Hao CS, Su YM, Yao YY, et al. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett. 2022;27(1).
102.
go back to reference Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, et al. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res. 2021;174: 105845.PubMedCrossRef Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, et al. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res. 2021;174: 105845.PubMedCrossRef
103.
go back to reference Zhao K, Yang CX, Zhang J, Sun W, Zhou B, Kong XQ, et al. METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17–3p in a DGCR8-dependent manner. Cell Death Discovery. 2021;7(1). Zhao K, Yang CX, Zhang J, Sun W, Zhou B, Kong XQ, et al. METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17–3p in a DGCR8-dependent manner. Cell Death Discovery. 2021;7(1).
104.
go back to reference Zhang L, Zhao X, Wang J, Jin YW, Gong MX, Ye YY, et al. METTL3 suppresses neuropathic pain via modulating N6-methyladenosine-dependent primary miR-150 processing. Cell Death Discovery. 2022;8(1). Zhang L, Zhao X, Wang J, Jin YW, Gong MX, Ye YY, et al. METTL3 suppresses neuropathic pain via modulating N6-methyladenosine-dependent primary miR-150 processing. Cell Death Discovery. 2022;8(1).
105.
go back to reference Liu EP, Lv L, Zhan YH, Ma Y, Feng JJ, He YL, et al. METTL3/N6-methyladenosine/ miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-kappa B pathway activation. J Cell Mol Med. 2021;25(16):7660–74.PubMedPubMedCentralCrossRef Liu EP, Lv L, Zhan YH, Ma Y, Feng JJ, He YL, et al. METTL3/N6-methyladenosine/ miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-kappa B pathway activation. J Cell Mol Med. 2021;25(16):7660–74.PubMedPubMedCentralCrossRef
106.
go back to reference Si W, Li Y, Ye S, Li Z, Liu Y, Kuang W, et al. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front Mol Neurosci. 2020;13:103.PubMedPubMedCentralCrossRef Si W, Li Y, Ye S, Li Z, Liu Y, Kuang W, et al. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front Mol Neurosci. 2020;13:103.PubMedPubMedCentralCrossRef
107.
go back to reference Dimitrova DG, Teysset L, Carre C. RNA 2'-O-methylation (Nm) modification in human diseases. Genes (Basel). 2019;10(2). Dimitrova DG, Teysset L, Carre C. RNA 2'-O-methylation (Nm) modification in human diseases. Genes (Basel). 2019;10(2).
108.
go back to reference Han X, Wang M, Zhao YL, Yang Y, Yang YG. RNA methylations in human cancers. Semin Cancer Biol. 2021;75:97–115.PubMedCrossRef Han X, Wang M, Zhao YL, Yang Y, Yang YG. RNA methylations in human cancers. Semin Cancer Biol. 2021;75:97–115.PubMedCrossRef
109.
go back to reference Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2’-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14(7):695–8.PubMedPubMedCentralCrossRef Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2’-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14(7):695–8.PubMedPubMedCentralCrossRef
110.
go back to reference Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.PubMedPubMedCentralCrossRef Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.PubMedPubMedCentralCrossRef
111.
go back to reference Yu B, Yang ZY, Li JJ, Minakhina S, Yang MC, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5.PubMedPubMedCentralCrossRef Yu B, Yang ZY, Li JJ, Minakhina S, Yang MC, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5.PubMedPubMedCentralCrossRef
112.
go back to reference Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol. 2007;17(14):1265–72.PubMedCrossRef Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol. 2007;17(14):1265–72.PubMedCrossRef
113.
go back to reference Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. Pimet, the Drosophila homolog of HEN1, mediates 2 ’-O-methylation of PIWI-interacting RNAs at their 3 ’ ends. Genes Dev. 2007;21(13):1603–8.PubMedPubMedCentralCrossRef Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. Pimet, the Drosophila homolog of HEN1, mediates 2 ’-O-methylation of PIWI-interacting RNAs at their 3 ’ ends. Genes Dev. 2007;21(13):1603–8.PubMedPubMedCentralCrossRef
114.
go back to reference Chan CM, Zhou C, Brunzelle JS, Huang RH. Structural and biochemical insights into 2’-O-methylation at the 3’-terminal nucleotide of RNA by Hen1. Proc Natl Acad Sci USA. 2009;106(42):17699–704.CrossRef Chan CM, Zhou C, Brunzelle JS, Huang RH. Structural and biochemical insights into 2’-O-methylation at the 3’-terminal nucleotide of RNA by Hen1. Proc Natl Acad Sci USA. 2009;106(42):17699–704.CrossRef
115.
go back to reference Ren GD, Xie M, Zhang SX, Vinovskis C, Chen XM, Yu B. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5’ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA. 2014;111(17):6365–70.PubMedPubMedCentralCrossRef Ren GD, Xie M, Zhang SX, Vinovskis C, Chen XM, Yu B. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5’ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA. 2014;111(17):6365–70.PubMedPubMedCentralCrossRef
117.
go back to reference Zhao YY, Yu Y, Zhai JX, Ramachandran V, Dinh TT, Meyers BC, et al. The Arabidopsis Nucleotidyl Transferase HESO1 Uridylates Unmethylated Small RNAs to Trigger Their Degradation. Curr Biol. 2012;22(8):689–94.PubMedPubMedCentralCrossRef Zhao YY, Yu Y, Zhai JX, Ramachandran V, Dinh TT, Meyers BC, et al. The Arabidopsis Nucleotidyl Transferase HESO1 Uridylates Unmethylated Small RNAs to Trigger Their Degradation. Curr Biol. 2012;22(8):689–94.PubMedPubMedCentralCrossRef
119.
go back to reference Yildirim I, Kierzek E, Kierzek R, Schatz GC. Interplay of LNA and 2’-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results. J Phys Chem B. 2014;118(49):14177–87.PubMedCrossRef Yildirim I, Kierzek E, Kierzek R, Schatz GC. Interplay of LNA and 2’-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results. J Phys Chem B. 2014;118(49):14177–87.PubMedCrossRef
120.
go back to reference Kumar S, Mapa K, Maiti S. Understanding the effect of locked nucleic acid and 2’-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein. Biochemistry. 2014;53(10):1607–15.PubMedCrossRef Kumar S, Mapa K, Maiti S. Understanding the effect of locked nucleic acid and 2’-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein. Biochemistry. 2014;53(10):1607–15.PubMedCrossRef
121.
go back to reference Yang ZY, Ebright YW, Yu B, Chen XM. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2 ’ OH of the 3 ’ terminal nucleotide. Nucleic Acids Res. 2006;34(2):667–75.PubMedPubMedCentralCrossRef Yang ZY, Ebright YW, Yu B, Chen XM. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2 ’ OH of the 3 ’ terminal nucleotide. Nucleic Acids Res. 2006;34(2):667–75.PubMedPubMedCentralCrossRef
122.
go back to reference Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.PubMedCrossRef Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.PubMedCrossRef
123.
go back to reference Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007;129(1):69–82.PubMedCrossRef Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007;129(1):69–82.PubMedCrossRef
124.
go back to reference Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJT, Roovers EF, et al. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010;29(21):3688–700.PubMedPubMedCentralCrossRef Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJT, Roovers EF, et al. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010;29(21):3688–700.PubMedPubMedCentralCrossRef
125.
go back to reference Kirino Y, Mourelatos Z. 2’-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp Ser (Oxf). 2007;51:417–8.CrossRef Kirino Y, Mourelatos Z. 2’-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp Ser (Oxf). 2007;51:417–8.CrossRef
127.
go back to reference Kirino Y, Mourelatos Z. Mouse Piwi-interacting RNAs are 2 ’-O-methylated at their 3 ’ termini. Nat Struct Mol Biol. 2007;14(4):347–8.PubMedCrossRef Kirino Y, Mourelatos Z. Mouse Piwi-interacting RNAs are 2 ’-O-methylated at their 3 ’ termini. Nat Struct Mol Biol. 2007;14(4):347–8.PubMedCrossRef
128.
go back to reference Tu B, Liu L, Xu C, Zhai J, Li S, Lopez MA, et al. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet. 2015;11(4): e1005119.PubMedPubMedCentralCrossRef Tu B, Liu L, Xu C, Zhai J, Li S, Lopez MA, et al. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet. 2015;11(4): e1005119.PubMedPubMedCentralCrossRef
129.
go back to reference Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi- interacting RNAs at their 3’ ends. Genes Dev. 2007;21(13):1603–8.PubMedPubMedCentralCrossRef Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi- interacting RNAs at their 3’ ends. Genes Dev. 2007;21(13):1603–8.PubMedPubMedCentralCrossRef
130.
go back to reference Abe M, Naqvi A, Hendriks GJ, Feltzin V, Zhu YQ, Grigoriev A, et al. Impact of age-associated increase in 2 ’-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev. 2014;28(1):44–57.PubMedPubMedCentralCrossRef Abe M, Naqvi A, Hendriks GJ, Feltzin V, Zhu YQ, Grigoriev A, et al. Impact of age-associated increase in 2 ’-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev. 2014;28(1):44–57.PubMedPubMedCentralCrossRef
131.
go back to reference Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11(10): e1005620.PubMedPubMedCentralCrossRef Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11(10): e1005620.PubMedPubMedCentralCrossRef
132.
go back to reference Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, et al. 3’-Terminal 2’-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020;48(13):7027–40.PubMedPubMedCentral Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, et al. 3’-Terminal 2’-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020;48(13):7027–40.PubMedPubMedCentral
133.
go back to reference Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, et al. tRNA 2’-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res. 2020;48(4):2050–72.PubMedPubMedCentralCrossRef Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, et al. tRNA 2’-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res. 2020;48(4):2050–72.PubMedPubMedCentralCrossRef
134.
go back to reference He Q, Yang L, Gao K, Ding P, Chen Q, Xiong J, et al. FTSJ1 regulates tRNA 2’-O-methyladenosine modification and suppresses the malignancy of NSCLC via inhibiting DRAM1 expression. Cell Death Dis. 2020;11(5):348.PubMedPubMedCentralCrossRef He Q, Yang L, Gao K, Ding P, Chen Q, Xiong J, et al. FTSJ1 regulates tRNA 2’-O-methyladenosine modification and suppresses the malignancy of NSCLC via inhibiting DRAM1 expression. Cell Death Dis. 2020;11(5):348.PubMedPubMedCentralCrossRef
135.
go back to reference Yi Y, Li Y, Meng Q, Li Q, Li F, Lu B, et al. A PRC2-independent function for EZH2 in regulating rRNA 2’-O methylation and IRES-dependent translation. Nat Cell Biol. 2021;23(4):341–54.PubMedPubMedCentralCrossRef Yi Y, Li Y, Meng Q, Li Q, Li F, Lu B, et al. A PRC2-independent function for EZH2 in regulating rRNA 2’-O methylation and IRES-dependent translation. Nat Cell Biol. 2021;23(4):341–54.PubMedPubMedCentralCrossRef
136.
go back to reference Bujnicki JM, Feder M, Ayres CL, Redman KL. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res. 2004;32(8):2453–63.PubMedPubMedCentralCrossRef Bujnicki JM, Feder M, Ayres CL, Redman KL. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res. 2004;32(8):2453–63.PubMedPubMedCentralCrossRef
137.
go back to reference Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30.PubMedCrossRef Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30.PubMedCrossRef
138.
go back to reference Kedersha NL, Rome LH. Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol. 1986;103(3):699–709.PubMedCrossRef Kedersha NL, Rome LH. Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol. 1986;103(3):699–709.PubMedCrossRef
139.
go back to reference Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 2013;4(2):255–61.PubMedPubMedCentralCrossRef Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 2013;4(2):255–61.PubMedPubMedCentralCrossRef
140.
go back to reference Sajini AA, Choudhury NR, Wagner RE, Bornelov S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10(1):2550.PubMedPubMedCentralCrossRef Sajini AA, Choudhury NR, Wagner RE, Bornelov S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10(1):2550.PubMedPubMedCentralCrossRef
141.
go back to reference Carissimi C, Laudadio I, Lorefice E, Azzalin G, De Paolis V, Fulci V. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol. 2021;18(12):2226–35.PubMedPubMedCentralCrossRef Carissimi C, Laudadio I, Lorefice E, Azzalin G, De Paolis V, Fulci V. Bisulphite miRNA-seq reveals widespread CpG and non-CpG 5-(hydroxy)methyl-Cytosine in human microRNAs. RNA Biol. 2021;18(12):2226–35.PubMedPubMedCentralCrossRef
142.
go back to reference Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1). Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1).
143.
144.
go back to reference Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33(18):2020–39.PubMedPubMedCentralCrossRef Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33(18):2020–39.PubMedPubMedCentralCrossRef
145.
go back to reference Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24(15):1590–5.PubMedPubMedCentralCrossRef Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24(15):1590–5.PubMedPubMedCentralCrossRef
146.
go back to reference Tuorto F, Herbst F, Alerasool N, Bender S, Popp O, Federico G, et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 2015;34(18):2350–62.PubMedPubMedCentralCrossRef Tuorto F, Herbst F, Alerasool N, Bender S, Popp O, Federico G, et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 2015;34(18):2350–62.PubMedPubMedCentralCrossRef
147.
go back to reference Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19(9):900–5.PubMedCrossRef Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19(9):900–5.PubMedCrossRef
148.
go back to reference Flores JV, Cordero-Espinoza L, Oeztuerk-Winder F, Andersson-Rolf A, Selmi T, Blanco S, et al. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Rep. 2017;8(1):112–24.CrossRef Flores JV, Cordero-Espinoza L, Oeztuerk-Winder F, Andersson-Rolf A, Selmi T, Blanco S, et al. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Rep. 2017;8(1):112–24.CrossRef
149.
go back to reference Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, et al. Stem cell function and stress response are controlled by protein synthesis. Nature. 2016;534(7607):335–40.PubMedPubMedCentralCrossRef Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, et al. Stem cell function and stress response are controlled by protein synthesis. Nature. 2016;534(7607):335–40.PubMedPubMedCentralCrossRef
150.
go back to reference Zhang YF, Zhang XD, Shi JC, Tuorto F, Li X, Liu YS, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20(5):535.PubMedPubMedCentralCrossRef Zhang YF, Zhang XD, Shi JC, Tuorto F, Li X, Liu YS, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20(5):535.PubMedPubMedCentralCrossRef
151.
go back to reference Charette M, Gray MW. Pseudouridine in RNA: what, where, how, and why. IUBMB Life. 2000;49(5):341–51.PubMedCrossRef Charette M, Gray MW. Pseudouridine in RNA: what, where, how, and why. IUBMB Life. 2000;49(5):341–51.PubMedCrossRef
152.
go back to reference Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Ann Rev Genetics. 2020;54:309–36.CrossRef Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Ann Rev Genetics. 2020;54:309–36.CrossRef
154.
go back to reference Hammal T, Ferre-D’Amare AR. Pseudouridine synthases. Chem Biol. 2006;13(11):1125–35.CrossRef Hammal T, Ferre-D’Amare AR. Pseudouridine synthases. Chem Biol. 2006;13(11):1125–35.CrossRef
155.
go back to reference Han L, Kon Y, Phizicky EM. Functional importance of Psi(38) and Psi(39) in distinct tRNAs, amplified for tRNA(Gln(UUG)) by unexpected temperature sensitivity of the s(2)U modification in yeast. RNA. 2015;21(2):188–201.PubMedPubMedCentralCrossRef Han L, Kon Y, Phizicky EM. Functional importance of Psi(38) and Psi(39) in distinct tRNAs, amplified for tRNA(Gln(UUG)) by unexpected temperature sensitivity of the s(2)U modification in yeast. RNA. 2015;21(2):188–201.PubMedPubMedCentralCrossRef
156.
go back to reference Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 2011;44(4):660–6.PubMedPubMedCentralCrossRef Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 2011;44(4):660–6.PubMedPubMedCentralCrossRef
157.
go back to reference Ofengand J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 2002;514(1):17–25.PubMedCrossRef Ofengand J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 2002;514(1):17–25.PubMedCrossRef
158.
go back to reference Wu GW, Yu AT, Kantartzis A, Yu YT. Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. Wiley Interdisciplinary Reviews-RNA. 2011;2(4):571–81.PubMedPubMedCentralCrossRef Wu GW, Yu AT, Kantartzis A, Yu YT. Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. Wiley Interdisciplinary Reviews-RNA. 2011;2(4):571–81.PubMedPubMedCentralCrossRef
160.
go back to reference Karijolich J, Yu YT. Spliceosomal snRNA modifications and their function. RNA Biol. 2010;7(2):192–204.PubMedCrossRef Karijolich J, Yu YT. Spliceosomal snRNA modifications and their function. RNA Biol. 2010;7(2):192–204.PubMedCrossRef
161.
go back to reference Li XY, Zhu P, Ma SQ, Song JH, Bai JY, Sun FF, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11(8):592-U93.PubMedCrossRef Li XY, Zhu P, Ma SQ, Song JH, Bai JY, Sun FF, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11(8):592-U93.PubMedCrossRef
162.
go back to reference Nir R, Hoernes TP, Muramatsu H, Faserl K, Kariko K, Erlacher MD, et al. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res. 2022;50(9):4900–16.PubMedPubMedCentralCrossRef Nir R, Hoernes TP, Muramatsu H, Faserl K, Kariko K, Erlacher MD, et al. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res. 2022;50(9):4900–16.PubMedPubMedCentralCrossRef
163.
go back to reference Guzzi N, Ciesla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173(5):1204.PubMedCrossRef Guzzi N, Ciesla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173(5):1204.PubMedCrossRef
164.
go back to reference Song JH, Zhuang Y, Zhu CX, Meng HW, Lu B, Xie BT, et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020;16(2):160.PubMedCrossRef Song JH, Zhuang Y, Zhu CX, Meng HW, Lu B, Xie BT, et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020;16(2):160.PubMedCrossRef
165.
go back to reference Kurimoto R, Chiba T, Ito Y, Matsushima T, Yano Y, Miyata K, et al. The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. Embo J. 2020;39(20). Kurimoto R, Chiba T, Ito Y, Matsushima T, Yano Y, Miyata K, et al. The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. Embo J. 2020;39(20).
166.
go back to reference Furuichi Y, LaFiandra A, Shatkin AJ. 5’-Terminal structure and mRNA stability. Nature. 1977;266(5599):235–9.PubMedCrossRef Furuichi Y, LaFiandra A, Shatkin AJ. 5’-Terminal structure and mRNA stability. Nature. 1977;266(5599):235–9.PubMedCrossRef
167.
go back to reference Shimotohno K, Kodama Y, Hashimoto J, Miura KI. Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci U S A. 1977;74(7):2734–8.PubMedPubMedCentralCrossRef Shimotohno K, Kodama Y, Hashimoto J, Miura KI. Importance of 5’-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci U S A. 1977;74(7):2734–8.PubMedPubMedCentralCrossRef
168.
go back to reference Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278-90 e9.PubMedPubMedCentralCrossRef Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278-90 e9.PubMedPubMedCentralCrossRef
169.
go back to reference Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–18.PubMedCrossRef Guy MP, Phizicky EM. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014;11(12):1608–18.PubMedCrossRef
170.
go back to reference Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14(9):1138–52.PubMedCrossRef Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14(9):1138–52.PubMedCrossRef
171.
go back to reference Lin SB, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244.PubMedPubMedCentralCrossRef Lin SB, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244.PubMedPubMedCentralCrossRef
172.
go back to reference Dunn DB. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961;46:198–200.PubMedCrossRef Dunn DB. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961;46:198–200.PubMedCrossRef
173.
go back to reference Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, et al. The dynamic N-1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441.PubMedPubMedCentralCrossRef Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, et al. The dynamic N-1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441.PubMedPubMedCentralCrossRef
174.
go back to reference Li XY, Xiong XS, Wang K, Wang LX, Shu XT, Ma SQ, et al. Transcriptome-wide mapping reveals reversible and dynamic N-1-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311.PubMedCrossRef Li XY, Xiong XS, Wang K, Wang LX, Shu XT, Ma SQ, et al. Transcriptome-wide mapping reveals reversible and dynamic N-1-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311.PubMedCrossRef
175.
go back to reference Su ZL, Monshaugen I, Wilson B, Wang FB, Klungland A, Ougland R, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022;13(1). Su ZL, Monshaugen I, Wilson B, Wang FB, Klungland A, Ougland R, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022;13(1).
176.
go back to reference Wang L, Shangguan S, Xin Y, Chang S, Wang Z, Lu X, et al. Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects. J Cell Mol Med. 2017;21(12):3244–53.PubMedPubMedCentralCrossRef Wang L, Shangguan S, Xin Y, Chang S, Wang Z, Lu X, et al. Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects. J Cell Mol Med. 2017;21(12):3244–53.PubMedPubMedCentralCrossRef
177.
go back to reference Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112(44):13699–704.PubMedPubMedCentralCrossRef Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112(44):13699–704.PubMedPubMedCentralCrossRef
178.
go back to reference Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400.PubMedCrossRef Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400.PubMedCrossRef
179.
go back to reference Seidel A, Brunner S, Seidel P, Fritz GI, Herbarth O. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer. 2006;94(11):1726–33.PubMedPubMedCentralCrossRef Seidel A, Brunner S, Seidel P, Fritz GI, Herbarth O. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer. 2006;94(11):1726–33.PubMedPubMedCentralCrossRef
180.
go back to reference Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. Front Mol Biosci. 2022;9: 887686.PubMedPubMedCentralCrossRef Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. Front Mol Biosci. 2022;9: 887686.PubMedPubMedCentralCrossRef
181.
go back to reference Yan M, Wang Y, Hu Y, Feng Y, Dai C, Wu J, et al. A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes. Anal Chem. 2013;85(24):12173–81.PubMedCrossRef Yan M, Wang Y, Hu Y, Feng Y, Dai C, Wu J, et al. A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes. Anal Chem. 2013;85(24):12173–81.PubMedCrossRef
182.
183.
go back to reference Guo H, Shen X, Hu H, Zhou P, He T, Xia L, et al. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol Hum Reprod. 2022;28(9). Guo H, Shen X, Hu H, Zhou P, He T, Xia L, et al. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol Hum Reprod. 2022;28(9).
184.
go back to reference Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1):36.PubMedPubMedCentralCrossRef Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1):36.PubMedPubMedCentralCrossRef
185.
go back to reference Guzzi N, Muthukumar S, Ciesla M, Todisco G, Ngoc PCT, Madej M, et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol. 2022;24(3):299–306.PubMedPubMedCentralCrossRef Guzzi N, Muthukumar S, Ciesla M, Todisco G, Ngoc PCT, Madej M, et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol. 2022;24(3):299–306.PubMedPubMedCentralCrossRef
186.
187.
go back to reference Deng JX, Nie XJ, Lei YF, Ma CF, Xu DL, Li BA, et al. The highly conserved 5 ' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2 '-modified siRNAs. J Biomed Sci. 2012;19. Deng JX, Nie XJ, Lei YF, Ma CF, Xu DL, Li BA, et al. The highly conserved 5 ' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2 '-modified siRNAs. J Biomed Sci. 2012;19.
188.
go back to reference Thomas A, Walpurgis K, Delahaut P, Kohler M, Schanzer W, Thevis M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test Anal. 2013;5(11–12):853–60.PubMedCrossRef Thomas A, Walpurgis K, Delahaut P, Kohler M, Schanzer W, Thevis M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test Anal. 2013;5(11–12):853–60.PubMedCrossRef
190.
go back to reference Hirschi KD, Pruss GJ, Vance V. Dietary delivery: a new avenue for microRNA therapeutics? Trends Biotechnol. 2015;33(8):431–2.PubMedCrossRef Hirschi KD, Pruss GJ, Vance V. Dietary delivery: a new avenue for microRNA therapeutics? Trends Biotechnol. 2015;33(8):431–2.PubMedCrossRef
191.
go back to reference Jockel S, Nees G, Sommer R, Zhao Y, Cherkasov D, Hori H, et al. The 2’-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med. 2012;209(2):235–41.PubMedPubMedCentralCrossRef Jockel S, Nees G, Sommer R, Zhao Y, Cherkasov D, Hori H, et al. The 2’-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med. 2012;209(2):235–41.PubMedPubMedCentralCrossRef
192.
go back to reference Gehrig S, Eberle ME, Botschen F, Rimbach K, Eberle F, Eigenbrod T, et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J Exp Med. 2012;209(2):225–33.PubMedPubMedCentralCrossRef Gehrig S, Eberle ME, Botschen F, Rimbach K, Eberle F, Eigenbrod T, et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J Exp Med. 2012;209(2):225–33.PubMedPubMedCentralCrossRef
193.
go back to reference Su Z, Monshaugen I, Wilson B, Wang F, Klungland A, Ougland R, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022;13(1):2165.PubMedPubMedCentralCrossRef Su Z, Monshaugen I, Wilson B, Wang F, Klungland A, Ougland R, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022;13(1):2165.PubMedPubMedCentralCrossRef
194.
go back to reference Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods. 2015;12(9):879–84.PubMedPubMedCentralCrossRef Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods. 2015;12(9):879–84.PubMedPubMedCentralCrossRef
195.
196.
go back to reference Watkins CP, Zhang W, Wylder AC, Katanski CD, Pan T. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022;13(1):2491.PubMedPubMedCentralCrossRef Watkins CP, Zhang W, Wylder AC, Katanski CD, Pan T. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022;13(1):2491.PubMedPubMedCentralCrossRef
197.
go back to reference Wang H, Huang R, Li L, Zhu J, Li Z, Peng C, et al. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 2021;7(1):25.PubMedPubMedCentralCrossRef Wang H, Huang R, Li L, Zhu J, Li Z, Peng C, et al. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 2021;7(1):25.PubMedPubMedCentralCrossRef
198.
go back to reference Shi J, Zhang Y, Tan D, Zhang X, Yan M, Zhang Y, et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol. 2021;23(4):424–36.PubMedPubMedCentralCrossRef Shi J, Zhang Y, Tan D, Zhang X, Yan M, Zhang Y, et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol. 2021;23(4):424–36.PubMedPubMedCentralCrossRef
199.
go back to reference Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat Biotechnol. 2021;39(8):978–88.PubMedPubMedCentralCrossRef Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat Biotechnol. 2021;39(8):978–88.PubMedPubMedCentralCrossRef
200.
go back to reference Honda S, Morichika K, Kirino Y. Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method. Nat Protoc. 2016;11(3):476–89.PubMedPubMedCentralCrossRef Honda S, Morichika K, Kirino Y. Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method. Nat Protoc. 2016;11(3):476–89.PubMedPubMedCentralCrossRef
201.
go back to reference Kugelberg U, Natt D, Skog S, Kutter C, Ost A. 5 XP sRNA-seq: efficient identification of transcripts with and without 5 phosphorylation reveals evolutionary conserved small RNA. RNA Biol. 2021;18(11):1588–99.PubMedCrossRef Kugelberg U, Natt D, Skog S, Kutter C, Ost A. 5 XP sRNA-seq: efficient identification of transcripts with and without 5 phosphorylation reveals evolutionary conserved small RNA. RNA Biol. 2021;18(11):1588–99.PubMedCrossRef
202.
go back to reference Hu L, Liu S, Peng Y, Ge R, Su R, Senevirathne C, et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat Biotechnol. 2022;40(8):1210–9.PubMedCrossRef Hu L, Liu S, Peng Y, Ge R, Su R, Senevirathne C, et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat Biotechnol. 2022;40(8):1210–9.PubMedCrossRef
203.
go back to reference Xiao YL, Liu S, Ge R, Wu Y, He C, Chen M, et al. Transcriptome-wide profiling and quantification of N(6)-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol. 2023. Xiao YL, Liu S, Ge R, Wu Y, He C, Chen M, et al. Transcriptome-wide profiling and quantification of N(6)-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol. 2023.
204.
go back to reference Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–72.PubMedPubMedCentralCrossRef Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–72.PubMedPubMedCentralCrossRef
205.
go back to reference Clark WC, Evans ME, Dominissini D, Zheng G, Pan T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA. 2016;22(11):1771–84.PubMedPubMedCentralCrossRef Clark WC, Evans ME, Dominissini D, Zheng G, Pan T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA. 2016;22(11):1771–84.PubMedPubMedCentralCrossRef
206.
go back to reference Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNA. Nucleic Acids Res. 2016;44(16): e135.PubMedPubMedCentralCrossRef Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNA. Nucleic Acids Res. 2016;44(16): e135.PubMedPubMedCentralCrossRef
207.
go back to reference Krogh N, Birkedal U, Nielsen H. RiboMeth-seq: profiling of 2’-O-me in RNA. Methods Mol Biol. 2017;1562:189–209.PubMedCrossRef Krogh N, Birkedal U, Nielsen H. RiboMeth-seq: profiling of 2’-O-me in RNA. Methods Mol Biol. 2017;1562:189–209.PubMedCrossRef
208.
go back to reference Incarnato D, Anselmi F, Morandi E, Neri F, Maldotti M, Rapelli S, et al. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues. Nucleic Acids Res. 2017;45(3):1433–41.PubMedCrossRef Incarnato D, Anselmi F, Morandi E, Neri F, Maldotti M, Rapelli S, et al. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues. Nucleic Acids Res. 2017;45(3):1433–41.PubMedCrossRef
209.
go back to reference Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M, et al. Engineering of a DNA polymerase for direct m(6) A sequencing. Angew Chem Int Ed Engl. 2018;57(2):417–21.PubMedCrossRef Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M, et al. Engineering of a DNA polymerase for direct m(6) A sequencing. Angew Chem Int Ed Engl. 2018;57(2):417–21.PubMedCrossRef
210.
go back to reference Schaefer M. RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol. 2015;560:297–329.PubMedCrossRef Schaefer M. RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol. 2015;560:297–329.PubMedCrossRef
211.
go back to reference Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 2009;37(2): e12.PubMedCrossRef Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 2009;37(2): e12.PubMedCrossRef
212.
go back to reference Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, Helm M, et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 2017;27(9):1589–96.PubMedPubMedCentralCrossRef Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, Helm M, et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 2017;27(9):1589–96.PubMedPubMedCentralCrossRef
213.
go back to reference Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A. 2019;116(14):6784–9.PubMedPubMedCentralCrossRef Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A. 2019;116(14):6784–9.PubMedPubMedCentralCrossRef
214.
go back to reference Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148–62.PubMedPubMedCentralCrossRef Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148–62.PubMedPubMedCentralCrossRef
215.
go back to reference Enroth C, Poulsen LD, Iversen S, Kirpekar F, Albrechtsen A, Vinther J. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res. 2019;47(20): e126.PubMedPubMedCentralCrossRef Enroth C, Poulsen LD, Iversen S, Kirpekar F, Albrechtsen A, Vinther J. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res. 2019;47(20): e126.PubMedPubMedCentralCrossRef
216.
go back to reference Marchand V, Ayadi L, Ernst FGM, Hertler J, Bourguignon-Igel V, Galvanin A, et al. AlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolution. Angew Chem Int Ed Engl. 2018;57(51):16785–90.PubMedCrossRef Marchand V, Ayadi L, Ernst FGM, Hertler J, Bourguignon-Igel V, Galvanin A, et al. AlkAniline-Seq: profiling of m(7) G and m(3) C RNA modifications at single nucleotide resolution. Angew Chem Int Ed Engl. 2018;57(51):16785–90.PubMedCrossRef
217.
go back to reference Cui J, Liu Q, Sendinc E, Shi Y, Gregory RI. Nucleotide resolution profiling of m3C RNA modification by HAC-seq. Nucleic Acids Res. 2021;49(5): e27.PubMedCrossRef Cui J, Liu Q, Sendinc E, Shi Y, Gregory RI. Nucleotide resolution profiling of m3C RNA modification by HAC-seq. Nucleic Acids Res. 2021;49(5): e27.PubMedCrossRef
218.
go back to reference Marchand V, Pichot F, Neybecker P, Ayadi L, Bourguignon-Igel V, Wacheul L, et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020;48(19): e110.PubMedPubMedCentralCrossRef Marchand V, Pichot F, Neybecker P, Ayadi L, Bourguignon-Igel V, Wacheul L, et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020;48(19): e110.PubMedPubMedCentralCrossRef
219.
go back to reference Zhang N, Shi S, Jia TZ, Ziegler A, Yoo B, Yuan X, et al. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Res. 2019;47(20): e125.PubMedPubMedCentralCrossRef Zhang N, Shi S, Jia TZ, Ziegler A, Yoo B, Yuan X, et al. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. Nucleic Acids Res. 2019;47(20): e125.PubMedPubMedCentralCrossRef
220.
go back to reference Cai WM, Chionh YH, Hia F, Gu C, Kellner S, McBee ME, et al. A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. RNA Modification. 2015;560:29–71.CrossRef Cai WM, Chionh YH, Hia F, Gu C, Kellner S, McBee ME, et al. A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. RNA Modification. 2015;560:29–71.CrossRef
221.
go back to reference Su D, Chan CTY, Gu C, Lim KS, Chionh YH, McBee ME, et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc. 2014;9(4):828–41.PubMedPubMedCentralCrossRef Su D, Chan CTY, Gu C, Lim KS, Chionh YH, McBee ME, et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc. 2014;9(4):828–41.PubMedPubMedCentralCrossRef
Metadata
Title
Small RNA modifications: regulatory molecules and potential applications
Authors
Qunli Xiong
Yaguang Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01466-w

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine