Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2015

Open Access 01-12-2015 | Research article

Small for gestational age births among South Indian women: temporal trend and risk factors from 1996 to 2010

Authors: Tunny Sebastian, Bijesh Yadav, Lakshmanan Jeyaseelan, Reeta Vijayaselvi, Ruby Jose

Published in: BMC Pregnancy and Childbirth | Issue 1/2015

Login to get access

Abstract

Background

The birth weight and gestational age at birth are two important variables that define neonatal morbidity and mortality. In developed countries, chronic maternal diseases like hypertension, diabetes mellitus, renal disease or collagen vascular disease is the most common cause of intrauterine growth restriction (IUGR). Maternal nutrition, pregnancy induced hypertension, chronic maternal infections, and other infections such as cytomegalovirus, parvovirus, rubella and malaria are the other causes of IUGR. The present study examines the secular trend of Small for Gestational Age (SGA) over 15 years and risk factors for SGA from a referral hospital in India.

Methods

Data from 1996 to 2010 was obtained from the labour room register. A rotational sampling scheme was used i.e. 12 months of the year were divided into 4 quarters. Taking into consideration all deliveries that met the inclusion criteria, babies whose birth weights were less than 10th percentile of the cut off values specific for gestational ages, were categorized as SGA. Only deliveries of live births that occurred between 22 and 42 weeks of pregnancy were considered in this study. Besides bivariate analyses, multivariable logistic regression analysis was done. Nagelkerke R2 statistics and Hosmer and Lemeshow chi-square statistics were used as goodness of fit statistics.

Results

Based on the data from 36,674 deliveries, the incidence of SGA was 11.4% in 1996 and 8.4% in 2010. Women who had multiple pregnancies had the higher odds of having SGA babies, 2.8 (2.3-3.3) times. The women with hypertensive disease had 1.8 (1.5-1.9) times higher odds of having SGA. Underweight women had 1.7 (1.3 - 2.1) times and anaemic mothers had 1.29 (1.01 - 1.6) times higher odds. The mothers who had cardiac disease were 1.4 (1.01 - 2.0) times at higher odds for SGA. In teenage pregnancies, the odds of SGA was 1.3 (1.1 - 1.5) times higher than mothers in the age group 20 to 35 years.

Conclusions

There is a significant reduction in the incidence of SGA by 26% over 15 years. The women with the above modifiable risk factors need to be identified early and provided with health education on optimal birth weight.
Literature
1.
go back to reference Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382:417–25.CrossRefPubMedPubMedCentral Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382:417–25.CrossRefPubMedPubMedCentral
2.
go back to reference Villar J, Belizán JM. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. Am J Obstet Gynecol. 1982;143:793–8.CrossRefPubMed Villar J, Belizán JM. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. Am J Obstet Gynecol. 1982;143:793–8.CrossRefPubMed
3.
go back to reference Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1:e26–36.CrossRefPubMedPubMedCentral Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1:e26–36.CrossRefPubMedPubMedCentral
4.
go back to reference Heaman M, Kingston D, Chalmers B, Sauve R, Lee L, Young D. Risk factors for preterm birth and small-for-gestational-age births among Canadian women. Paediatr Perinat Epidemiol. 2013;27:54–61.CrossRefPubMed Heaman M, Kingston D, Chalmers B, Sauve R, Lee L, Young D. Risk factors for preterm birth and small-for-gestational-age births among Canadian women. Paediatr Perinat Epidemiol. 2013;27:54–61.CrossRefPubMed
5.
go back to reference Lin CC, Santolaya-Forgas J. Current concepts of fetal growth restriction: part I. Causes, classification, and pathophysiology. Obstet Gynecol. 1998;92:1044–55.PubMed Lin CC, Santolaya-Forgas J. Current concepts of fetal growth restriction: part I. Causes, classification, and pathophysiology. Obstet Gynecol. 1998;92:1044–55.PubMed
6.
go back to reference Martinelli P, Grandone E, Colaizzo D, Paladini D, Sciannamé N, Margaglione M, et al. Familial thrombophilia and the occurrence of fetal growth restriction. Haematologica. 2001;86:428–31.PubMed Martinelli P, Grandone E, Colaizzo D, Paladini D, Sciannamé N, Margaglione M, et al. Familial thrombophilia and the occurrence of fetal growth restriction. Haematologica. 2001;86:428–31.PubMed
7.
go back to reference Heilmann L, von Tempelhoff G-F, Pollow K. Antiphospholipid syndrome in obstetrics. Clin Appl Thromb Off J Int Acad Clin Appl Thromb. 2003;9:143–50.CrossRef Heilmann L, von Tempelhoff G-F, Pollow K. Antiphospholipid syndrome in obstetrics. Clin Appl Thromb Off J Int Acad Clin Appl Thromb. 2003;9:143–50.CrossRef
8.
go back to reference Lau C, Rogers JM, Desai M, Ross MG. Fetal programming of adult disease: implications for prenatal care. Obstet Gynecol. 2011;117:978–85.CrossRefPubMed Lau C, Rogers JM, Desai M, Ross MG. Fetal programming of adult disease: implications for prenatal care. Obstet Gynecol. 2011;117:978–85.CrossRefPubMed
9.
go back to reference Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371:261–9.CrossRefPubMed Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371:261–9.CrossRefPubMed
10.
go back to reference Petrou S, Sach T, Davidson L. The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev. 2001;27:97–115.CrossRefPubMed Petrou S, Sach T, Davidson L. The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev. 2001;27:97–115.CrossRefPubMed
11.
go back to reference Madan A, Holland S, Humbert JE, Benitz WE. Racial differences in birth weight of term infants in a northern California population. J Perinatol. 2002;22:230–5.CrossRefPubMed Madan A, Holland S, Humbert JE, Benitz WE. Racial differences in birth weight of term infants in a northern California population. J Perinatol. 2002;22:230–5.CrossRefPubMed
12.
go back to reference Alexander GR, Kotelchuck M. Quantifying the adequacy of prenatal care: a comparison of indices. Public Health Rep. 1996;111:408–19.PubMedPubMedCentral Alexander GR, Kotelchuck M. Quantifying the adequacy of prenatal care: a comparison of indices. Public Health Rep. 1996;111:408–19.PubMedPubMedCentral
13.
go back to reference Kumar VS, Jeyaseelan L, Sebastian T, Regi A, Mathew J, Jose R. New birth weight reference standards customised to birth order and sex of babies from South India. BMC Pregnancy Childbirth. 2013;13:38.CrossRefPubMedPubMedCentral Kumar VS, Jeyaseelan L, Sebastian T, Regi A, Mathew J, Jose R. New birth weight reference standards customised to birth order and sex of babies from South India. BMC Pregnancy Childbirth. 2013;13:38.CrossRefPubMedPubMedCentral
14.
go back to reference Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181:129–33.CrossRefPubMed Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181:129–33.CrossRefPubMed
16.
go back to reference Dubowitz L, Dubowitz V, Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr. 1970;77:1–10.CrossRefPubMed Dubowitz L, Dubowitz V, Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr. 1970;77:1–10.CrossRefPubMed
17.
go back to reference Mathai M, Jacob S, Karthikeyan NG. Birthweight standards for south Indian babies. Indian Pediatr. 1996;33:203–9.PubMed Mathai M, Jacob S, Karthikeyan NG. Birthweight standards for south Indian babies. Indian Pediatr. 1996;33:203–9.PubMed
18.
go back to reference Mehta M, Pattanayak RD. Follow-up for improving psychological well-being for women after a miscarriage: RHL Commentary (last revised: 1 January 2013) The WHO Reproductive Health Library; Geneva: World Health Organization. Mehta M, Pattanayak RD. Follow-up for improving psychological well-being for women after a miscarriage: RHL Commentary (last revised: 1 January 2013) The WHO Reproductive Health Library; Geneva: World Health Organization.
19.
go back to reference Thompson D, Berger H, Feig D, Gagnon R, Kader T, Keely E, et al. Diabetes and pregnancy. Can J Diabetes. 2013;37:S168–83.CrossRefPubMed Thompson D, Berger H, Feig D, Gagnon R, Kader T, Keely E, et al. Diabetes and pregnancy. Can J Diabetes. 2013;37:S168–83.CrossRefPubMed
20.
go back to reference WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.CrossRef WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.CrossRef
21.
go back to reference World Health Organization (WHO). The prevalence of Anaemia in women: a tabulation of available information. Geneva, Switzerland: WHO; 1992. WHO/MCH/MSM/92.2. World Health Organization (WHO). The prevalence of Anaemia in women: a tabulation of available information. Geneva, Switzerland: WHO; 1992. WHO/MCH/MSM/92.2.
22.
go back to reference Kramer MS, Ananth CV, Platt RW, Joseph KS. US Black vs White disparities in foetal growth: physiological or pathological? Int J Epidemiol. 2006;35:1187–95.CrossRefPubMed Kramer MS, Ananth CV, Platt RW, Joseph KS. US Black vs White disparities in foetal growth: physiological or pathological? Int J Epidemiol. 2006;35:1187–95.CrossRefPubMed
23.
24.
go back to reference Ananth CV, Demissie K, Kramer MS, Vintzileos AM. Small-for-gestational-age births among black and white women: temporal trends in the United States. Am J Public Health. 2003;93:577–9.CrossRefPubMedPubMedCentral Ananth CV, Demissie K, Kramer MS, Vintzileos AM. Small-for-gestational-age births among black and white women: temporal trends in the United States. Am J Public Health. 2003;93:577–9.CrossRefPubMedPubMedCentral
25.
go back to reference Madan A, Palaniappan L, Urizar G, Wang Y, Fortmann SP, Gould JB. Sociocultural factors that affect pregnancy outcomes in two dissimilar immigrant groups in the United States. J Pediatr. 2006;148:341–6.CrossRefPubMed Madan A, Palaniappan L, Urizar G, Wang Y, Fortmann SP, Gould JB. Sociocultural factors that affect pregnancy outcomes in two dissimilar immigrant groups in the United States. J Pediatr. 2006;148:341–6.CrossRefPubMed
26.
go back to reference George K, Prasad J, Singh D, Minz S, Albert DS, Muliyil J, et al. Perinatal outcomes in a South Asian setting with high rates of low birth weight. BMC Pregnancy Childbirth. 2009;9:5.CrossRefPubMedPubMedCentral George K, Prasad J, Singh D, Minz S, Albert DS, Muliyil J, et al. Perinatal outcomes in a South Asian setting with high rates of low birth weight. BMC Pregnancy Childbirth. 2009;9:5.CrossRefPubMedPubMedCentral
27.
go back to reference Ghosh S, Bhargava SK, Madhavan S, Taskar AD, Bhargava V, Nigam SK. Intra-uterine growth of North Indian babies. Pediatrics. 1971;47:826–30.PubMed Ghosh S, Bhargava SK, Madhavan S, Taskar AD, Bhargava V, Nigam SK. Intra-uterine growth of North Indian babies. Pediatrics. 1971;47:826–30.PubMed
28.
go back to reference Zhang J, Bowes Jr WA. Birth-weight-for-gestational-age patterns by race, sex, and parity in the United States population. Obstet Gynecol. 1995;86:200–8.CrossRefPubMed Zhang J, Bowes Jr WA. Birth-weight-for-gestational-age patterns by race, sex, and parity in the United States population. Obstet Gynecol. 1995;86:200–8.CrossRefPubMed
29.
go back to reference Mavalankar DV, Gray RH, Trivedi CR, Parikh VC. Risk factors for small for gestational age births in Ahmedabad, India. J Trop Pediatr. 1994;40:285–90.CrossRefPubMed Mavalankar DV, Gray RH, Trivedi CR, Parikh VC. Risk factors for small for gestational age births in Ahmedabad, India. J Trop Pediatr. 1994;40:285–90.CrossRefPubMed
Metadata
Title
Small for gestational age births among South Indian women: temporal trend and risk factors from 1996 to 2010
Authors
Tunny Sebastian
Bijesh Yadav
Lakshmanan Jeyaseelan
Reeta Vijayaselvi
Ruby Jose
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2015
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-015-0440-4

Other articles of this Issue 1/2015

BMC Pregnancy and Childbirth 1/2015 Go to the issue