Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2006

Open Access 01-12-2006 | Review

Smad signalling in the ovary

Authors: Noora Kaivo-oja, Luke A Jeffery, Olli Ritvos, David G Mottershead

Published in: Reproductive Biology and Endocrinology | Issue 1/2006

Login to get access

Abstract

It has now been a decade since the first discovery of the intracellular Smad proteins, the downstream signalling molecules of one of the most important growth factor families in the animal kingdom, the transforming growth factor beta (TGF-beta) superfamily. In the ovary, several TGF-beta superfamily members are expressed by the oocyte, granulosa and thecal cells at different stages of folliculogenesis, and they signal mainly through two different Smad pathways in an autocrine/paracrine manner. Defects in the upstream signalling cascade molecules, the ligands and receptors, are known to have adverse effects on ovarian organogenesis and folliculogenesis, but the role of the individual Smad proteins in the proper function of the ovary is just beginning to be understood for example through the use of Smad knockout models. Although most of the different Smad knockouts are embryonic lethal, it is known, however, that in Smad1 and Smad5 knockout mice primordial germ cell development is impaired and that Smad3 deficient mice harbouring a deletion in exon 8 exhibit impaired folliculogenesis and reduced fertility. In this minireview we discuss the role of Smad structure and function in the ovarian context.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pangas SA, Matzuk MM: Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol. 2004, 225 (1-2): 83-91. 10.1016/j.mce.2004.02.017.PubMed Pangas SA, Matzuk MM: Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol. 2004, 225 (1-2): 83-91. 10.1016/j.mce.2004.02.017.PubMed
2.
go back to reference Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM: The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A. 2001, 98 (14): 7994-7999. 10.1073/pnas.141002798.PubMedCentralPubMed Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM: The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A. 2001, 98 (14): 7994-7999. 10.1073/pnas.141002798.PubMedCentralPubMed
3.
go back to reference Ying Y, Qi X, Zhao GQ: Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A. 2001, 98 (14): 7858-7862. 10.1073/pnas.151242798.PubMedCentralPubMed Ying Y, Qi X, Zhao GQ: Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A. 2001, 98 (14): 7858-7862. 10.1073/pnas.151242798.PubMedCentralPubMed
4.
go back to reference Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM: Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995, 139 (3): 1347-1358.PubMedCentralPubMed Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM: Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995, 139 (3): 1347-1358.PubMedCentralPubMed
5.
go back to reference Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, Massague J, Melton DA, Mlodzik M, Padgett RW, Roberts AB, Smith J, Thomsen GH, Vogelstein B, Wang XF: Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996, 87 (2): 173-10.1016/S0092-8674(00)81335-5.PubMed Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, Massague J, Melton DA, Mlodzik M, Padgett RW, Roberts AB, Smith J, Thomsen GH, Vogelstein B, Wang XF: Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996, 87 (2): 173-10.1016/S0092-8674(00)81335-5.PubMed
6.
go back to reference Masuyama N, Hanafusa H, Kusakabe M, Shibuya H, Nishida E: Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J Biol Chem. 1999, 274 (17): 12163-12170. 10.1074/jbc.274.17.12163.PubMed Masuyama N, Hanafusa H, Kusakabe M, Shibuya H, Nishida E: Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J Biol Chem. 1999, 274 (17): 12163-12170. 10.1074/jbc.274.17.12163.PubMed
7.
go back to reference Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003, 113 (6): 685-700. 10.1016/S0092-8674(03)00432-X.PubMed Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003, 113 (6): 685-700. 10.1016/S0092-8674(03)00432-X.PubMed
8.
go back to reference Moustakas A, Souchelnytskyi S, Heldin CH: Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001, 114 (Pt 24): 4359-4369.PubMed Moustakas A, Souchelnytskyi S, Heldin CH: Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001, 114 (Pt 24): 4359-4369.PubMed
9.
go back to reference Attisano L, Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 2002, 296 (5573): 1646-1647. 10.1126/science.1071809.PubMed Attisano L, Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 2002, 296 (5573): 1646-1647. 10.1126/science.1071809.PubMed
10.
go back to reference Eppig JJ: Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001, 122 (6): 829-838. 10.1530/rep.0.1220829.PubMed Eppig JJ: Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001, 122 (6): 829-838. 10.1530/rep.0.1220829.PubMed
11.
go back to reference Gilchrist RB, Ritter LJ, Armstrong DT: Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004, 82-83: 431-446. 10.1016/j.anireprosci.2004.05.017.PubMed Gilchrist RB, Ritter LJ, Armstrong DT: Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004, 82-83: 431-446. 10.1016/j.anireprosci.2004.05.017.PubMed
12.
go back to reference Tremblay KD, Dunn NR, Robertson EJ: Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development. 2001, 128 (18): 3609-3621.PubMed Tremblay KD, Dunn NR, Robertson EJ: Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development. 2001, 128 (18): 3609-3621.PubMed
13.
go back to reference Chang H, Matzuk MM: Smad5 is required for mouse primordial germ cell development. Mech Dev. 2001, 104 (1-2): 61-67. 10.1016/S0925-4773(01)00367-7.PubMed Chang H, Matzuk MM: Smad5 is required for mouse primordial germ cell development. Mech Dev. 2001, 104 (1-2): 61-67. 10.1016/S0925-4773(01)00367-7.PubMed
14.
go back to reference Xu J, Oakley J, McGee EA: Stage-specific expression of Smad2 and Smad3 during folliculogenesis. Biol Reprod. 2002, 66 (6): 1571-1578. 10.1095/biolreprod66.6.1571.PubMed Xu J, Oakley J, McGee EA: Stage-specific expression of Smad2 and Smad3 during folliculogenesis. Biol Reprod. 2002, 66 (6): 1571-1578. 10.1095/biolreprod66.6.1571.PubMed
15.
go back to reference Dennler S, Huet S, Gauthier JM: A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene. 1999, 18 (8): 1643-1648. 10.1038/sj.onc.1202729.PubMed Dennler S, Huet S, Gauthier JM: A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene. 1999, 18 (8): 1643-1648. 10.1038/sj.onc.1202729.PubMed
16.
go back to reference Dunn NR, Koonce CH, Anderson DC, Islam A, Bikoff EK, Robertson EJ: Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev. 2005, 19 (1): 152-163. 10.1101/gad.1243205.PubMedCentralPubMed Dunn NR, Koonce CH, Anderson DC, Islam A, Bikoff EK, Robertson EJ: Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev. 2005, 19 (1): 152-163. 10.1101/gad.1243205.PubMedCentralPubMed
17.
go back to reference Hata A, Lo RS, Wotton D, Lagna G, Massague J: Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature. 1997, 388 (6637): 82-87. 10.1038/40424.PubMed Hata A, Lo RS, Wotton D, Lagna G, Massague J: Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature. 1997, 388 (6637): 82-87. 10.1038/40424.PubMed
18.
go back to reference Kretzschmar M, Doody J, Massague J: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 1997, 389 (6651): 618-622. 10.1038/39348.PubMed Kretzschmar M, Doody J, Massague J: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 1997, 389 (6651): 618-622. 10.1038/39348.PubMed
19.
go back to reference Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A: Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol. 2000, 20 (21): 8103-8111. 10.1128/MCB.20.21.8103-8111.2000.PubMedCentralPubMed Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A: Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol. 2000, 20 (21): 8103-8111. 10.1128/MCB.20.21.8103-8111.2000.PubMedCentralPubMed
20.
go back to reference Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S: Regulation of Smad signaling by protein kinase C. Faseb J. 2001, 15 (3): 553-555.PubMed Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S: Regulation of Smad signaling by protein kinase C. Faseb J. 2001, 15 (3): 553-555.PubMed
21.
go back to reference Izzi L, Attisano L: Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004, 23 (11): 2071-2078. 10.1038/sj.onc.1207412.PubMed Izzi L, Attisano L: Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004, 23 (11): 2071-2078. 10.1038/sj.onc.1207412.PubMed
22.
go back to reference Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell. 2001, 12 (5): 1431-1443.PubMedCentralPubMed Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell. 2001, 12 (5): 1431-1443.PubMedCentralPubMed
23.
go back to reference Watanabe M, Masuyama N, Fukuda M, Nishida E: Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000, 1 (2): 176-182. 10.1093/embo-reports/kvd029.PubMedCentralPubMed Watanabe M, Masuyama N, Fukuda M, Nishida E: Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000, 1 (2): 176-182. 10.1093/embo-reports/kvd029.PubMedCentralPubMed
24.
go back to reference de Caestecker MP, Yahata T, Wang D, Parks WT, Huang S, Hill CS, Shioda T, Roberts AB, Lechleider RJ: The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000, 275 (3): 2115-2122. 10.1074/jbc.275.3.2115.PubMed de Caestecker MP, Yahata T, Wang D, Parks WT, Huang S, Hill CS, Shioda T, Roberts AB, Lechleider RJ: The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000, 275 (3): 2115-2122. 10.1074/jbc.275.3.2115.PubMed
25.
go back to reference Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S: Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. Embo J. 2001, 20 (15): 4132-4142. 10.1093/emboj/20.15.4132.PubMedCentralPubMed Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S: Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. Embo J. 2001, 20 (15): 4132-4142. 10.1093/emboj/20.15.4132.PubMedCentralPubMed
26.
go back to reference Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Dijke P: Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem. 1998, 273 (44): 29195-29201. 10.1074/jbc.273.44.29195.PubMed Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Dijke P: Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem. 1998, 273 (44): 29195-29201. 10.1074/jbc.273.44.29195.PubMed
27.
go back to reference Pierreux CE, Nicolas FJ, Hill CS: Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000, 20 (23): 9041-9054. 10.1128/MCB.20.23.9041-9054.2000.PubMedCentralPubMed Pierreux CE, Nicolas FJ, Hill CS: Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000, 20 (23): 9041-9054. 10.1128/MCB.20.23.9041-9054.2000.PubMedCentralPubMed
28.
go back to reference Dong C, Li Z, Alvarez RJ, Feng XH, Goldschmidt-Clermont PJ: Microtubule binding to Smads may regulate TGF beta activity. Mol Cell. 2000, 5 (1): 27-34. 10.1016/S1097-2765(00)80400-1.PubMed Dong C, Li Z, Alvarez RJ, Feng XH, Goldschmidt-Clermont PJ: Microtubule binding to Smads may regulate TGF beta activity. Mol Cell. 2000, 5 (1): 27-34. 10.1016/S1097-2765(00)80400-1.PubMed
29.
go back to reference Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K: Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem. 2001, 276 (21): 17871-17877. 10.1074/jbc.M008422200.PubMed Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K: Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem. 2001, 276 (21): 17871-17877. 10.1074/jbc.M008422200.PubMed
30.
go back to reference Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J: Determinants of specificity in TGF-beta signal transduction. Genes Dev. 1998, 12 (14): 2144-2152.PubMedCentralPubMed Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J: Determinants of specificity in TGF-beta signal transduction. Genes Dev. 1998, 12 (14): 2144-2152.PubMedCentralPubMed
31.
go back to reference Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engstrom U, Heldin CH, Funa K, ten Dijke P: The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett. 1998, 434 (1-2): 83-87. 10.1016/S0014-5793(98)00954-5.PubMed Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, Engstrom U, Heldin CH, Funa K, ten Dijke P: The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett. 1998, 434 (1-2): 83-87. 10.1016/S0014-5793(98)00954-5.PubMed
32.
go back to reference Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL: Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol. 2003, 5 (5): 410-421. 10.1038/ncb975.PubMed Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL: Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol. 2003, 5 (5): 410-421. 10.1038/ncb975.PubMed
33.
go back to reference Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998, 95 (6): 779-791. 10.1016/S0092-8674(00)81701-8.PubMed Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998, 95 (6): 779-791. 10.1016/S0092-8674(00)81701-8.PubMed
34.
go back to reference Lin HK, Bergmann S, Pandolfi PP: Cytoplasmic PML function in TGF-beta signalling. Nature. 2004, 431 (7005): 205-211. 10.1038/nature02783.PubMed Lin HK, Bergmann S, Pandolfi PP: Cytoplasmic PML function in TGF-beta signalling. Nature. 2004, 431 (7005): 205-211. 10.1038/nature02783.PubMed
35.
go back to reference Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M: Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol. 2001, 21 (15): 5132-5141. 10.1128/MCB.21.15.5132-5141.2001.PubMedCentralPubMed Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M: Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol. 2001, 21 (15): 5132-5141. 10.1128/MCB.21.15.5132-5141.2001.PubMedCentralPubMed
36.
go back to reference Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. Embo J. 2001, 20 (11): 2789-2801. 10.1093/emboj/20.11.2789.PubMedCentralPubMed Hocevar BA, Smine A, Xu XX, Howe PH: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. Embo J. 2001, 20 (11): 2789-2801. 10.1093/emboj/20.11.2789.PubMedCentralPubMed
37.
go back to reference Runyan CE, Schnaper HW, Poncelet AC: The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J Biol Chem. 2005, 280 (9): 8300-8308. 10.1074/jbc.M407939200.PubMed Runyan CE, Schnaper HW, Poncelet AC: The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J Biol Chem. 2005, 280 (9): 8300-8308. 10.1074/jbc.M407939200.PubMed
38.
go back to reference Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K: The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol. 2001, 8 (3): 248-253. 10.1038/84995.PubMed Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K: The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol. 2001, 8 (3): 248-253. 10.1038/84995.PubMed
39.
go back to reference Wu JW, Fairman R, Penry J, Shi Y: Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem. 2001, 276 (23): 20688-20694. 10.1074/jbc.M100174200.PubMed Wu JW, Fairman R, Penry J, Shi Y: Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem. 2001, 276 (23): 20688-20694. 10.1074/jbc.M100174200.PubMed
40.
go back to reference Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 1999, 401 (6752): 480-485. 10.1038/46794.PubMed Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 1999, 401 (6752): 480-485. 10.1038/46794.PubMed
41.
go back to reference Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999, 400 (6745): 687-693. 10.1038/23293.PubMed Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999, 400 (6745): 687-693. 10.1038/23293.PubMed
42.
go back to reference Lin X, Liang M, Feng XH: Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem. 2000, 275 (47): 36818-36822. 10.1074/jbc.C000580200.PubMed Lin X, Liang M, Feng XH: Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem. 2000, 275 (47): 36818-36822. 10.1074/jbc.C000580200.PubMed
43.
go back to reference Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R: Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A. 2001, 98 (3): 974-979. 10.1073/pnas.98.3.974.PubMedCentralPubMed Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R: Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A. 2001, 98 (3): 974-979. 10.1073/pnas.98.3.974.PubMedCentralPubMed
44.
go back to reference Massague J: How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000, 1 (3): 169-178. 10.1038/35043051.PubMed Massague J: How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000, 1 (3): 169-178. 10.1038/35043051.PubMed
45.
go back to reference Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003, 425 (6958): 577-584. 10.1038/nature02006.PubMed Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003, 425 (6958): 577-584. 10.1038/nature02006.PubMed
46.
go back to reference Liu X, Sun Y, Weinberg RA, Lodish HF: Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev. 2001, 12 (1): 1-8. 10.1016/S1359-6101(00)00031-9.PubMed Liu X, Sun Y, Weinberg RA, Lodish HF: Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev. 2001, 12 (1): 1-8. 10.1016/S1359-6101(00)00031-9.PubMed
47.
go back to reference Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 1999, 13 (7): 804-816.PubMedCentralPubMed Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 1999, 13 (7): 804-816.PubMedCentralPubMed
48.
go back to reference Brown JD, DiChiara MR, Anderson KR, Gimbrone MAJ, Topper JN: MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem. 1999, 274 (13): 8797-8805. 10.1074/jbc.274.13.8797.PubMed Brown JD, DiChiara MR, Anderson KR, Gimbrone MAJ, Topper JN: MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem. 1999, 274 (13): 8797-8805. 10.1074/jbc.274.13.8797.PubMed
49.
go back to reference Pulaski L, Landstrom M, Heldin CH, Souchelnytskyi S: Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta-dependent signaling but affects Smad7-dependent transcriptional activation. J Biol Chem. 2001, 276 (17): 14344-14349.PubMed Pulaski L, Landstrom M, Heldin CH, Souchelnytskyi S: Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta-dependent signaling but affects Smad7-dependent transcriptional activation. J Biol Chem. 2001, 276 (17): 14344-14349.PubMed
50.
go back to reference Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA: Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci. 2003, 358 (1436): 1363-1370. 10.1098/rstb.2003.1324.PubMedCentralPubMed Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA: Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci. 2003, 358 (1436): 1363-1370. 10.1098/rstb.2003.1324.PubMedCentralPubMed
51.
go back to reference van den Hurk R, Zhao J: Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology. 2005, 63 (6): 1717-1751. 10.1016/j.theriogenology.2004.08.005.PubMed van den Hurk R, Zhao J: Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology. 2005, 63 (6): 1717-1751. 10.1016/j.theriogenology.2004.08.005.PubMed
52.
go back to reference Chuva de Sousa Lopes SM, van den Driesche S, Carvalho RL, Larsson J, Eggen B, Surani MA, Mummery CL: Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. Dev Biol. 2005, 284 (1): 194-203. 10.1016/j.ydbio.2005.05.019.PubMed Chuva de Sousa Lopes SM, van den Driesche S, Carvalho RL, Larsson J, Eggen B, Surani MA, Mummery CL: Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. Dev Biol. 2005, 284 (1): 194-203. 10.1016/j.ydbio.2005.05.019.PubMed
53.
go back to reference Gougeon A: Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996, 17 (2): 121-155. 10.1210/er.17.2.121.PubMed Gougeon A: Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996, 17 (2): 121-155. 10.1210/er.17.2.121.PubMed
54.
go back to reference Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002, 296 (5576): 2178-2180. 10.1126/science.1071965.PubMed Matzuk MM, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002, 296 (5576): 2178-2180. 10.1126/science.1071965.PubMed
55.
go back to reference Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM: The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998, 12 (12): 1809-1817. 10.1210/me.12.12.1809.PubMed Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM: The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998, 12 (12): 1809-1817. 10.1210/me.12.12.1809.PubMed
56.
go back to reference Laitinen M, Vuojolainen K, Jaatinen R, Ketola I, Aaltonen J, Lehtonen E, Heikinheimo M, Ritvos O: A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev. 1998, 78 (1-2): 135-140. 10.1016/S0925-4773(98)00161-0.PubMed Laitinen M, Vuojolainen K, Jaatinen R, Ketola I, Aaltonen J, Lehtonen E, Heikinheimo M, Ritvos O: A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev. 1998, 78 (1-2): 135-140. 10.1016/S0925-4773(98)00161-0.PubMed
57.
go back to reference Schmid P, Cox D, van der Putten H, McMaster GK, Bilbe G: Expression of TGF-beta s and TGF-beta type II receptor mRNAs in mouse folliculogenesis: stored maternal TGF-beta 2 message in oocytes. Biochem Biophys Res Commun. 1994, 201 (2): 649-656. 10.1006/bbrc.1994.1750.PubMed Schmid P, Cox D, van der Putten H, McMaster GK, Bilbe G: Expression of TGF-beta s and TGF-beta type II receptor mRNAs in mouse folliculogenesis: stored maternal TGF-beta 2 message in oocytes. Biochem Biophys Res Commun. 1994, 201 (2): 649-656. 10.1006/bbrc.1994.1750.PubMed
58.
go back to reference Lyons KM, Pelton RW, Hogan BL: Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989, 3 (11): 1657-1668.PubMed Lyons KM, Pelton RW, Hogan BL: Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989, 3 (11): 1657-1668.PubMed
59.
go back to reference Gilchrist RB, Morrissey MP, Ritter LJ, Armstrong DT: Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Mol Cell Endocrinol. 2003, 201 (1-2): 87-95. 10.1016/S0303-7207(02)00429-X.PubMed Gilchrist RB, Morrissey MP, Ritter LJ, Armstrong DT: Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Mol Cell Endocrinol. 2003, 201 (1-2): 87-95. 10.1016/S0303-7207(02)00429-X.PubMed
60.
go back to reference Knight PG, Glister C: Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003, 78 (3-4): 165-183. 10.1016/S0378-4320(03)00089-7.PubMed Knight PG, Glister C: Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003, 78 (3-4): 165-183. 10.1016/S0378-4320(03)00089-7.PubMed
61.
go back to reference Liao WX, Moore RK, Shimasaki S: Functional and molecular characterization of naturally occurring mutations in the oocyte-secreted factors bone morphogenetic protein-15 and growth and differentiation factor-9. J Biol Chem. 2004, 279 (17): 17391-17396. 10.1074/jbc.M401050200.PubMed Liao WX, Moore RK, Shimasaki S: Functional and molecular characterization of naturally occurring mutations in the oocyte-secreted factors bone morphogenetic protein-15 and growth and differentiation factor-9. J Biol Chem. 2004, 279 (17): 17391-17396. 10.1074/jbc.M401050200.PubMed
62.
go back to reference Tomic D, Brodie SG, Deng C, Hickey RJ, Babus JK, Malkas LH, Flaws JA: Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod. 2002, 66 (4): 917-923. 10.1095/biolreprod66.4.917.PubMed Tomic D, Brodie SG, Deng C, Hickey RJ, Babus JK, Malkas LH, Flaws JA: Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod. 2002, 66 (4): 917-923. 10.1095/biolreprod66.4.917.PubMed
63.
go back to reference Ingman WV, Robker RL, Woittiez K, Robertson SA: Null mutation in TGF{beta}1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology. 2005 Ingman WV, Robker RL, Woittiez K, Robertson SA: Null mutation in TGF{beta}1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology. 2005
64.
go back to reference McGrath SA, Esquela AF, Lee SJ: Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995, 9 (1): 131-136. 10.1210/me.9.1.131.PubMed McGrath SA, Esquela AF, Lee SJ: Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995, 9 (1): 131-136. 10.1210/me.9.1.131.PubMed
65.
go back to reference Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM: Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996, 383 (6600): 531-535. 10.1038/383531a0.PubMed Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM: Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996, 383 (6600): 531-535. 10.1038/383531a0.PubMed
66.
go back to reference Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O: Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000, 25 (3): 279-283. 10.1038/77033.PubMed Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O: Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000, 25 (3): 279-283. 10.1038/77033.PubMed
67.
go back to reference Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM: Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004, 70 (4): 900-909. 10.1095/biolreprod.103.023093.PubMed Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM: Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004, 70 (4): 900-909. 10.1095/biolreprod.103.023093.PubMed
68.
go back to reference Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM: Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001, 15 (6): 854-866. 10.1210/me.15.6.854.PubMed Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM: Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001, 15 (6): 854-866. 10.1210/me.15.6.854.PubMed
69.
go back to reference McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, O'Connell A, Bibby AH, Heath DA, Davis GH, Hanrahan JP, Juengel JL: Physiological effects of major genes affecting ovulation rate in sheep. Genet Sel Evol. 2005, 37 Suppl 1: S25-38. 10.1051/gse:2004029.PubMed McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, O'Connell A, Bibby AH, Heath DA, Davis GH, Hanrahan JP, Juengel JL: Physiological effects of major genes affecting ovulation rate in sheep. Genet Sel Evol. 2005, 37 Suppl 1: S25-38. 10.1051/gse:2004029.PubMed
70.
go back to reference Galloway SM, Gregan SM, Wilson T, McNatty KP, Juengel JL, Ritvos O, Davis GH: Bmp15 mutations and ovarian function. Mol Cell Endocrinol. 2002, 191 (1): 15-18. 10.1016/S0303-7207(02)00047-3.PubMed Galloway SM, Gregan SM, Wilson T, McNatty KP, Juengel JL, Ritvos O, Davis GH: Bmp15 mutations and ovarian function. Mol Cell Endocrinol. 2002, 191 (1): 15-18. 10.1016/S0303-7207(02)00047-3.PubMed
71.
go back to reference Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJ: Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999, 140 (3): 1236-1244. 10.1210/en.140.3.1236.PubMed Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJ: Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology. 1999, 140 (3): 1236-1244. 10.1210/en.140.3.1236.PubMed
72.
go back to reference Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM: Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999, 13 (6): 1035-1048. 10.1210/me.13.6.1035.PubMed Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM: Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999, 13 (6): 1035-1048. 10.1210/me.13.6.1035.PubMed
73.
go back to reference Vitt UA, Hayashi M, Klein C, Hsueh AJ: Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod. 2000, 62 (2): 370-377. 10.1095/biolreprod62.2.370.PubMed Vitt UA, Hayashi M, Klein C, Hsueh AJ: Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod. 2000, 62 (2): 370-377. 10.1095/biolreprod62.2.370.PubMed
74.
go back to reference Gilchrist RB, Ritter LJ, Cranfield M, Jeffery LA, Amato F, Scott SJ, Myllymaa S, Kaivo-Oja N, Lankinen H, Mottershead DG, Groome NP, Ritvos O: Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol Reprod. 2004, 71 (3): 732-739. 10.1095/biolreprod.104.028852.PubMed Gilchrist RB, Ritter LJ, Cranfield M, Jeffery LA, Amato F, Scott SJ, Myllymaa S, Kaivo-Oja N, Lankinen H, Mottershead DG, Groome NP, Ritvos O: Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol Reprod. 2004, 71 (3): 732-739. 10.1095/biolreprod.104.028852.PubMed
75.
go back to reference Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB: Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005, 146 (6): 2798-2806. 10.1210/en.2005-0098.PubMed Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB: Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005, 146 (6): 2798-2806. 10.1210/en.2005-0098.PubMed
76.
go back to reference Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM: Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol. 2002, 16 (6): 1154-1167. 10.1210/me.16.6.1154.PubMed Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM: Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol. 2002, 16 (6): 1154-1167. 10.1210/me.16.6.1154.PubMed
77.
go back to reference Pangas SA, Jorgez CJ, Matzuk MM: Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J Biol Chem. 2004, 279 (31): 32281-32286. 10.1074/jbc.M403212200.PubMed Pangas SA, Jorgez CJ, Matzuk MM: Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J Biol Chem. 2004, 279 (31): 32281-32286. 10.1074/jbc.M403212200.PubMed
78.
go back to reference Vitt UA, McGee EA, Hayashi M, Hsueh AJ: In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology. 2000, 141 (10): 3814-3820. 10.1210/en.141.10.3814.PubMed Vitt UA, McGee EA, Hayashi M, Hsueh AJ: In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology. 2000, 141 (10): 3814-3820. 10.1210/en.141.10.3814.PubMed
79.
go back to reference Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh AJ, Tsafriri A: Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod. 2000, 63 (4): 1214-1218. 10.1095/biolreprod63.4.1214.PubMed Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh AJ, Tsafriri A: Growth differentiation factor-9 stimulates rat theca-interstitial cell androgen biosynthesis. Biol Reprod. 2000, 63 (4): 1214-1218. 10.1095/biolreprod63.4.1214.PubMed
80.
go back to reference Yamamoto N, Christenson LK, McAllister JM, Strauss JF: Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab. 2002, 87 (6): 2849-2856. 10.1210/jc.87.6.2849.PubMed Yamamoto N, Christenson LK, McAllister JM, Strauss JF: Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab. 2002, 87 (6): 2849-2856. 10.1210/jc.87.6.2849.PubMed
81.
go back to reference Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001, 276 (14): 11387-11392. 10.1074/jbc.M010043200.PubMed Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001, 276 (14): 11387-11392. 10.1074/jbc.M010043200.PubMed
82.
go back to reference Otsuka F, Shimasaki S: A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci U S A. 2002, 99 (12): 8060-8065. 10.1073/pnas.122066899.PubMedCentralPubMed Otsuka F, Shimasaki S: A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci U S A. 2002, 99 (12): 8060-8065. 10.1073/pnas.122066899.PubMedCentralPubMed
83.
go back to reference Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB: Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005 Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB: Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005
84.
go back to reference McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP: Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 2005, 129 (4): 481-487. 10.1530/rep.1.00517.PubMed McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP: Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 2005, 129 (4): 481-487. 10.1530/rep.1.00517.PubMed
85.
go back to reference McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP: Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction. 2005, 129 (4): 473-480. 10.1530/rep.1.0511.PubMed McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP: Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction. 2005, 129 (4): 473-480. 10.1530/rep.1.0511.PubMed
86.
go back to reference Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, Ritvos O, Hsueh AJ: Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004, 18 (3): 653-665. 10.1210/me.2003-0393.PubMed Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, Ritvos O, Hsueh AJ: Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004, 18 (3): 653-665. 10.1210/me.2003-0393.PubMed
87.
go back to reference Roh JS, Bondestam J, Mazerbourg S, Kaivo-Oja N, Groome N, Ritvos O, Hsueh AJ: Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology. 2003, 144 (1): 172-178. 10.1210/en.2002-220618.PubMed Roh JS, Bondestam J, Mazerbourg S, Kaivo-Oja N, Groome N, Ritvos O, Hsueh AJ: Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology. 2003, 144 (1): 172-178. 10.1210/en.2002-220618.PubMed
88.
go back to reference Vitt UA, Mazerbourg S, Klein C, Hsueh AJ: Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod. 2002, 67 (2): 473-480. 10.1095/biolreprod67.2.473.PubMed Vitt UA, Mazerbourg S, Klein C, Hsueh AJ: Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod. 2002, 67 (2): 473-480. 10.1095/biolreprod67.2.473.PubMed
89.
go back to reference Kaivo-Oja N, Bondestam J, Kamarainen M, Koskimies J, Vitt U, Cranfield M, Vuojolainen K, Kallio JP, Olkkonen VM, Hayashi M, Moustakas A, Groome NP, ten Dijke P, Hsueh AJ, Ritvos O: Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 2003, 88 (2): 755-762. 10.1210/jc.2002-021317.PubMed Kaivo-Oja N, Bondestam J, Kamarainen M, Koskimies J, Vitt U, Cranfield M, Vuojolainen K, Kallio JP, Olkkonen VM, Hayashi M, Moustakas A, Groome NP, ten Dijke P, Hsueh AJ, Ritvos O: Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 2003, 88 (2): 755-762. 10.1210/jc.2002-021317.PubMed
90.
go back to reference Kaivo-Oja N, Mottershead DG, Mazerbourg S, Myllymaa S, Duprat S, Gilchrist RB, Groome NP, Hsueh AJ, Ritvos O: Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. J Clin Endocrinol Metab. 2005, 90 (1): 271-278. 10.1210/jc.2004-1288.PubMed Kaivo-Oja N, Mottershead DG, Mazerbourg S, Myllymaa S, Duprat S, Gilchrist RB, Groome NP, Hsueh AJ, Ritvos O: Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. J Clin Endocrinol Metab. 2005, 90 (1): 271-278. 10.1210/jc.2004-1288.PubMed
91.
go back to reference Moore RK, Otsuka F, Shimasaki S: Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003, 278 (1): 304-310. 10.1074/jbc.M207362200.PubMed Moore RK, Otsuka F, Shimasaki S: Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003, 278 (1): 304-310. 10.1074/jbc.M207362200.PubMed
92.
go back to reference McNatty KP, Juengel JL, Wilson T, Galloway SM, Davis GH: Genetic mutations influencing ovulation rate in sheep. Reprod Fertil Dev. 2001, 13 (7-8): 549-555. 10.1071/RD01078.PubMed McNatty KP, Juengel JL, Wilson T, Galloway SM, Davis GH: Genetic mutations influencing ovulation rate in sheep. Reprod Fertil Dev. 2001, 13 (7-8): 549-555. 10.1071/RD01078.PubMed
93.
go back to reference Otsuka F, Moore RK, Shimasaki S: Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem. 2001, 276 (35): 32889-32895. 10.1074/jbc.M103212200.PubMed Otsuka F, Moore RK, Shimasaki S: Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem. 2001, 276 (35): 32889-32895. 10.1074/jbc.M103212200.PubMed
94.
go back to reference de Caestecker M: The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004, 15 (1): 1-11. 10.1016/j.cytogfr.2003.10.004.PubMed de Caestecker M: The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004, 15 (1): 1-11. 10.1016/j.cytogfr.2003.10.004.PubMed
95.
go back to reference Shimasaki S, Moore RK, Otsuka F, Erickson GF: The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004, 25 (1): 72-101. 10.1210/er.2003-0007.PubMed Shimasaki S, Moore RK, Otsuka F, Erickson GF: The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004, 25 (1): 72-101. 10.1210/er.2003-0007.PubMed
96.
go back to reference Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, Miyazono K, Imamura T: Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci. 1999, 112 ( Pt 20): 3519-3527. Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, Miyazono K, Imamura T: Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci. 1999, 112 ( Pt 20): 3519-3527.
97.
go back to reference Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF: Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002, 87 (3): 1337-1344. 10.1210/jc.87.3.1337.PubMed Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF: Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002, 87 (3): 1337-1344. 10.1210/jc.87.3.1337.PubMed
98.
go back to reference Rabinovici J, Spencer SJ, Jaffe RB: Recombinant human activin-A promotes proliferation of human luteinized preovulatory granulosa cells in vitro. J Clin Endocrinol Metab. 1990, 71 (5): 1396-1398.PubMed Rabinovici J, Spencer SJ, Jaffe RB: Recombinant human activin-A promotes proliferation of human luteinized preovulatory granulosa cells in vitro. J Clin Endocrinol Metab. 1990, 71 (5): 1396-1398.PubMed
99.
go back to reference Xiao S, Robertson DM, Findlay JK: Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology. 1992, 131 (3): 1009-1016. 10.1210/en.131.3.1009.PubMed Xiao S, Robertson DM, Findlay JK: Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology. 1992, 131 (3): 1009-1016. 10.1210/en.131.3.1009.PubMed
100.
go back to reference Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, Vale W: Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000, 404 (6776): 411-414. 10.1038/35006129.PubMed Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, Vale W: Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000, 404 (6776): 411-414. 10.1038/35006129.PubMed
101.
go back to reference Gray PC, Harrison CA, Vale W: Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci U S A. 2003, 100 (9): 5193-5198. 10.1073/pnas.0531290100.PubMedCentralPubMed Gray PC, Harrison CA, Vale W: Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci U S A. 2003, 100 (9): 5193-5198. 10.1073/pnas.0531290100.PubMedCentralPubMed
102.
go back to reference Erickson GF, Shimasaki S: The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003, 1: 9-10.1186/1477-7827-1-9.PubMedCentralPubMed Erickson GF, Shimasaki S: The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003, 1: 9-10.1186/1477-7827-1-9.PubMedCentralPubMed
103.
go back to reference Jaatinen R, Rosen V, Tuuri T, Ritvos O: Identification of ovarian granulosa cells as a novel site of expression for bone morphogenetic protein-3 (BMP-3/osteogenin) and regulation of BMP-3 messenger ribonucleic acids by chorionic gonadotropin in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 1996, 81 (11): 3877-3882. 10.1210/jc.81.11.3877.PubMed Jaatinen R, Rosen V, Tuuri T, Ritvos O: Identification of ovarian granulosa cells as a novel site of expression for bone morphogenetic protein-3 (BMP-3/osteogenin) and regulation of BMP-3 messenger ribonucleic acids by chorionic gonadotropin in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 1996, 81 (11): 3877-3882. 10.1210/jc.81.11.3877.PubMed
104.
go back to reference Souza CJ, Campbell BK, McNeilly AS, Baird DT: Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction. 2002, 123 (3): 363-369. 10.1530/rep.0.1230363.PubMed Souza CJ, Campbell BK, McNeilly AS, Baird DT: Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction. 2002, 123 (3): 363-369. 10.1530/rep.0.1230363.PubMed
105.
go back to reference Jaatinen R, Bondestam J, Raivio T, Hilden K, Dunkel L, Groome N, Ritvos O: Activation of the bone morphogenetic protein signaling pathway induces inhibin beta(B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 2002, 87 (3): 1254-1261. 10.1210/jc.87.3.1254.PubMed Jaatinen R, Bondestam J, Raivio T, Hilden K, Dunkel L, Groome N, Ritvos O: Activation of the bone morphogenetic protein signaling pathway induces inhibin beta(B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 2002, 87 (3): 1254-1261. 10.1210/jc.87.3.1254.PubMed
106.
go back to reference Gamer LW, Nove J, Levin M, Rosen V: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev Biol. 2005, 285 (1): 156-168. 10.1016/j.ydbio.2005.06.012.PubMed Gamer LW, Nove J, Levin M, Rosen V: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev Biol. 2005, 285 (1): 156-168. 10.1016/j.ydbio.2005.06.012.PubMed
107.
go back to reference Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JT, Grootegoed JA, Themmen AP: Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002, 143 (3): 1076-1084. 10.1210/en.143.3.1076.PubMed Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JT, Grootegoed JA, Themmen AP: Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002, 143 (3): 1076-1084. 10.1210/en.143.3.1076.PubMed
108.
go back to reference Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP: Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999, 140 (12): 5789-5796. 10.1210/en.140.12.5789.PubMed Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP: Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999, 140 (12): 5789-5796. 10.1210/en.140.12.5789.PubMed
109.
go back to reference McGee EA, Smith R, Spears N, Nachtigal MW, Ingraham H, Hsueh AJ: Mullerian inhibitory substance induces growth of rat preantral ovarian follicles. Biol Reprod. 2001, 64 (1): 293-298. 10.1095/biolreprod64.1.293.PubMed McGee EA, Smith R, Spears N, Nachtigal MW, Ingraham H, Hsueh AJ: Mullerian inhibitory substance induces growth of rat preantral ovarian follicles. Biol Reprod. 2001, 64 (1): 293-298. 10.1095/biolreprod64.1.293.PubMed
110.
go back to reference Schmidt KL, Kryger-Baggesen N, Byskov AG, Andersen CY: Anti-Mullerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol. 2005, 234 (1-2): 87-93. 10.1016/j.mce.2004.12.010.PubMed Schmidt KL, Kryger-Baggesen N, Byskov AG, Andersen CY: Anti-Mullerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol. 2005, 234 (1-2): 87-93. 10.1016/j.mce.2004.12.010.PubMed
111.
go back to reference Baarends WM, van Helmond MJ, Post M, van der Schoot PJ, Hoogerbrugge JW, de Winter JP, Uilenbroek JT, Karels B, Wilming LG, Meijers JH, et al: A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the mullerian duct. Development. 1994, 120 (1): 189-197.PubMed Baarends WM, van Helmond MJ, Post M, van der Schoot PJ, Hoogerbrugge JW, de Winter JP, Uilenbroek JT, Karels B, Wilming LG, Meijers JH, et al: A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the mullerian duct. Development. 1994, 120 (1): 189-197.PubMed
112.
go back to reference Dutertre M, Gouedard L, Xavier F, Long WQ, di Clemente N, Picard JY, Rey R: Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice. Endocrinology. 2001, 142 (9): 4040-4046. 10.1210/en.142.9.4040.PubMed Dutertre M, Gouedard L, Xavier F, Long WQ, di Clemente N, Picard JY, Rey R: Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice. Endocrinology. 2001, 142 (9): 4040-4046. 10.1210/en.142.9.4040.PubMed
113.
go back to reference Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen AP, Ingraham HA: The serine/threonine transmembrane receptor ALK2 mediates Mullerian inhibiting substance signaling. Mol Endocrinol. 2001, 15 (6): 936-945. 10.1210/me.15.6.936.PubMed Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen AP, Ingraham HA: The serine/threonine transmembrane receptor ALK2 mediates Mullerian inhibiting substance signaling. Mol Endocrinol. 2001, 15 (6): 936-945. 10.1210/me.15.6.936.PubMed
114.
go back to reference Gouedard L, Chen YG, Thevenet L, Racine C, Borie S, Lamarre I, Josso N, Massague J, di Clemente N: Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Mullerian hormone and its type II receptor. J Biol Chem. 2000, 275 (36): 27973-27978.PubMed Gouedard L, Chen YG, Thevenet L, Racine C, Borie S, Lamarre I, Josso N, Massague J, di Clemente N: Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Mullerian hormone and its type II receptor. J Biol Chem. 2000, 275 (36): 27973-27978.PubMed
115.
go back to reference Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR: Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet. 2002, 32 (3): 408-410. 10.1038/ng1003.PubMed Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR: Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet. 2002, 32 (3): 408-410. 10.1038/ng1003.PubMed
116.
go back to reference Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, Sampath K, Chang RJ, Erickson GF: A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999, 96 (13): 7282-7287. 10.1073/pnas.96.13.7282.PubMedCentralPubMed Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, Sampath K, Chang RJ, Erickson GF: A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999, 96 (13): 7282-7287. 10.1073/pnas.96.13.7282.PubMedCentralPubMed
117.
go back to reference Ghiglieri C, Khatchadourian C, Tabone E, Hendrick JC, Benahmed M, Menezo Y: Immunolocalization of transforming growth factor-beta 1 and transforming growth factor-beta 2 in the mouse ovary during gonadotrophin-induced follicular maturation. Hum Reprod. 1995, 10 (8): 2115-2119.PubMed Ghiglieri C, Khatchadourian C, Tabone E, Hendrick JC, Benahmed M, Menezo Y: Immunolocalization of transforming growth factor-beta 1 and transforming growth factor-beta 2 in the mouse ovary during gonadotrophin-induced follicular maturation. Hum Reprod. 1995, 10 (8): 2115-2119.PubMed
118.
go back to reference Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL: Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem. 1998, 273 (40): 25628-25636. 10.1074/jbc.273.40.25628.PubMed Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL: Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J Biol Chem. 1998, 273 (40): 25628-25636. 10.1074/jbc.273.40.25628.PubMed
119.
go back to reference Pangas SA, Rademaker AW, Fishman DA, Woodruff TK: Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. J Clin Endocrinol Metab. 2002, 87 (6): 2644-2657. 10.1210/jc.87.6.2644.PubMed Pangas SA, Rademaker AW, Fishman DA, Woodruff TK: Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. J Clin Endocrinol Metab. 2002, 87 (6): 2644-2657. 10.1210/jc.87.6.2644.PubMed
120.
go back to reference Lechleider RJ, Ryan JL, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts AB: Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol. 2001, 240 (1): 157-167. 10.1006/dbio.2001.0469.PubMed Lechleider RJ, Ryan JL, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts AB: Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol. 2001, 240 (1): 157-167. 10.1006/dbio.2001.0469.PubMed
121.
go back to reference Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX: Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998, 95 (16): 9378-9383. 10.1073/pnas.95.16.9378.PubMedCentralPubMed Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX: Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998, 95 (16): 9378-9383. 10.1073/pnas.95.16.9378.PubMedCentralPubMed
122.
go back to reference Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998, 393 (6687): 786-790. 10.1038/31693.PubMed Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998, 393 (6687): 786-790. 10.1038/31693.PubMed
123.
go back to reference Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW: The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998, 12 (1): 107-119.PubMedCentralPubMed Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW: The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998, 12 (1): 107-119.PubMedCentralPubMed
124.
go back to reference Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A: Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999, 126 (8): 1631-1642.PubMed Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A: Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999, 126 (8): 1631-1642.PubMed
125.
go back to reference Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB: Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999, 1 (5): 260-266. 10.1038/12971.PubMed Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB: Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999, 1 (5): 260-266. 10.1038/12971.PubMed
126.
go back to reference Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. Embo J. 1999, 18 (5): 1280-1291. 10.1093/emboj/18.5.1280.PubMedCentralPubMed Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. Embo J. 1999, 18 (5): 1280-1291. 10.1093/emboj/18.5.1280.PubMedCentralPubMed
127.
go back to reference Zhu Y, Richardson JA, Parada LF, Graff JM: Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998, 94 (6): 703-714. 10.1016/S0092-8674(00)81730-4.PubMed Zhu Y, Richardson JA, Parada LF, Graff JM: Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998, 94 (6): 703-714. 10.1016/S0092-8674(00)81730-4.PubMed
128.
go back to reference Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P, Flaws JA: Ovarian follicle development requires Smad3. Mol Endocrinol. 2004, 18 (9): 2224-2240. 10.1210/me.2003-0414.PubMed Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P, Flaws JA: Ovarian follicle development requires Smad3. Mol Endocrinol. 2004, 18 (9): 2224-2240. 10.1210/me.2003-0414.PubMed
129.
go back to reference Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MAJ, Falb D, Huszar D: A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000, 24 (2): 171-174. 10.1038/72835.PubMed Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MAJ, Falb D, Huszar D: A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000, 24 (2): 171-174. 10.1038/72835.PubMed
130.
go back to reference Bristol-Gould SK, Hutten CG, Sturgis C, Kilen SM, Mayo KE, Woodruff TK: The Development of a Mouse Model of Ovarian Endosalpingiosis. Endocrinology. 2005 Bristol-Gould SK, Hutten CG, Sturgis C, Kilen SM, Mayo KE, Woodruff TK: The Development of a Mouse Model of Ovarian Endosalpingiosis. Endocrinology. 2005
131.
go back to reference McMullen ML, Cho BN, Yates CJ, Mayo KE: Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit. Endocrinology. 2001, 142 (11): 5005-5014. 10.1210/en.142.11.5005.PubMed McMullen ML, Cho BN, Yates CJ, Mayo KE: Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit. Endocrinology. 2001, 142 (11): 5005-5014. 10.1210/en.142.11.5005.PubMed
132.
go back to reference Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF: Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992, 68 (4): 775-785. 10.1016/0092-8674(92)90152-3.PubMed Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF: Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992, 68 (4): 775-785. 10.1016/0092-8674(92)90152-3.PubMed
133.
go back to reference Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, Miyazono K: Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993, 75 (4): 681-692. 10.1016/0092-8674(93)90489-D.PubMed Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, Miyazono K: Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993, 75 (4): 681-692. 10.1016/0092-8674(93)90489-D.PubMed
134.
go back to reference Attisano L, Wrana JL, Cheifetz S, Massague J: Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell. 1992, 68 (1): 97-108. 10.1016/0092-8674(92)90209-U.PubMed Attisano L, Wrana JL, Cheifetz S, Massague J: Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell. 1992, 68 (1): 97-108. 10.1016/0092-8674(92)90209-U.PubMed
135.
go back to reference ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin CH: Characterization of type I receptors for transforming growth factor-beta and activin. Science. 1994, 264 (5155): 101-104.PubMed ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin CH: Characterization of type I receptors for transforming growth factor-beta and activin. Science. 1994, 264 (5155): 101-104.PubMed
136.
go back to reference Mathews LS, Vale WW: Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991, 65 (6): 973-982. 10.1016/0092-8674(91)90549-E.PubMed Mathews LS, Vale WW: Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991, 65 (6): 973-982. 10.1016/0092-8674(91)90549-E.PubMed
137.
go back to reference Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K: Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A. 1995, 92 (17): 7632-7636.PubMedCentralPubMed Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K: Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci U S A. 1995, 92 (17): 7632-7636.PubMedCentralPubMed
138.
go back to reference Yamaji N, Celeste AJ, Thies RS, Song JJ, Bernier SM, Goltzman D, Lyons KM, Nove J, Rosen V, Wozney JM: A mammalian serine/threonine kinase receptor specifically binds BMP-2 and BMP-4. Biochem Biophys Res Commun. 1994, 205 (3): 1944-1951. 10.1006/bbrc.1994.2898.PubMed Yamaji N, Celeste AJ, Thies RS, Song JJ, Bernier SM, Goltzman D, Lyons KM, Nove J, Rosen V, Wozney JM: A mammalian serine/threonine kinase receptor specifically binds BMP-2 and BMP-4. Biochem Biophys Res Commun. 1994, 205 (3): 1944-1951. 10.1006/bbrc.1994.2898.PubMed
139.
go back to reference Shimasaki S, Moore RK, Erickson GF, Otsuka F: The role of bone morphogenetic proteins in ovarian function. Reprod Suppl. 2003, 61: 323-337.PubMed Shimasaki S, Moore RK, Erickson GF, Otsuka F: The role of bone morphogenetic proteins in ovarian function. Reprod Suppl. 2003, 61: 323-337.PubMed
140.
go back to reference ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K: Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem. 1994, 269 (25): 16985-16988.PubMed ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K: Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem. 1994, 269 (25): 16985-16988.PubMed
141.
go back to reference Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin CH, Miyazono K: Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol. 1995, 130 (1): 217-226. 10.1083/jcb.130.1.217.PubMed Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin CH, Miyazono K: Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol. 1995, 130 (1): 217-226. 10.1083/jcb.130.1.217.PubMed
Metadata
Title
Smad signalling in the ovary
Authors
Noora Kaivo-oja
Luke A Jeffery
Olli Ritvos
David G Mottershead
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2006
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-4-21

Other articles of this Issue 1/2006

Reproductive Biology and Endocrinology 1/2006 Go to the issue