Skip to main content
Top
Published in: BMC Neurology 1/2019

Open Access 01-12-2019 | Sleep Apnea | Research article

The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review

Authors: Talha Mubashir, Lusine Abrahamyan, Ayan Niazi, Deween Piyasena, Abdul A. Arif, Jean Wong, Ricardo S. Osorio, Clodagh M. Ryan, Frances Chung

Published in: BMC Neurology | Issue 1/2019

Login to get access

Abstract

Background

Previous studies have shown that obstructive sleep apnea (OSA) is associated with a higher risk of cognitive impairment or dementia in the elderly, leading to deleterious health effects and decreasing quality of life. This systematic review aims to determine the prevalence of OSA in patients with mild cognitive impairment (MCI) and examine whether an association between OSA and MCI exists.

Methods

We searched Medline, PubMed, Embase, Cochrane Central, Cochrane Database of Systematic Reviews, PsychINFO, Scopus, the Web of Science, ClinicalTrials.gov and the International Clinical Trials Registry Platform for published and unpublished studies. We included studies in adults with a diagnosis of MCI that reported on the prevalence of OSA. Two independent reviewers performed the abstract and full-text screening, data extraction and the study quality critical appraisal.

Results

Five studies were included in the systematic review. Overall, OSA prevalence rates in patients with MCI varied between 11 and 71% and were influenced by OSA diagnostic methods and patient recruitment locations (community or clinic based). Among studies using the following OSA diagnostic measures– self-report, Home Sleep Apnea Testing, Berlin Questionnaire and polysomnography– the OSA prevalence rates in MCI were 11, 27, 59 and 71%, respectively. In a community-based sample, the prevalence of OSA in patients with and without MCI was 27 and 26%, respectively.

Conclusions

Based on limited evidence, the prevalence of OSA in patients with MCI is 27% and varies based upon OSA diagnostic methods and patient recruitment locations. Our findings provide an important framework for future studies to prospectively investigate the association between OSA and MCI among larger community-based cohorts and implement a standardized approach to diagnose OSA in memory clinics.

PROSPERO registration

CRD42018096577.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–9.CrossRef Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306(6):613–9.CrossRef
2.
go back to reference Osorio RS, Gumb T, Pirraglia E, et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology. 2015;84(19):1964–71.CrossRef Osorio RS, Gumb T, Pirraglia E, et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology. 2015;84(19):1964–71.CrossRef
3.
go back to reference Gerstenecker A, Mast B. Mild cognitive impairment: a history and the state of current diagnostic criteria. Int Psychogeriatr. 2015;27(2):199–211.CrossRef Gerstenecker A, Mast B. Mild cognitive impairment: a history and the state of current diagnostic criteria. Int Psychogeriatr. 2015;27(2):199–211.CrossRef
4.
go back to reference Petersen RC, Smith GE, Waring S, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.CrossRef Petersen RC, Smith GE, Waring S, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.CrossRef
5.
go back to reference Petersen RC, Doody R, Kurz A, et al. Current Concepts in Mild Cognitive Impairment. Arch Neurol. 2001;58:1985–92.CrossRef Petersen RC, Doody R, Kurz A, et al. Current Concepts in Mild Cognitive Impairment. Arch Neurol. 2001;58:1985–92.CrossRef
6.
go back to reference Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94.CrossRef Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94.CrossRef
7.
go back to reference Petersen RC, Morris CJ. Mild Cognitive Impairment as a Clinical Entity and Treatment Target. Arch Neurol. 2005;62:1160–3.CrossRef Petersen RC, Morris CJ. Mild Cognitive Impairment as a Clinical Entity and Treatment Target. Arch Neurol. 2005;62:1160–3.CrossRef
8.
go back to reference Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256:240–6.CrossRef Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med. 2004;256:240–6.CrossRef
9.
go back to reference Albert M, DeKosky S, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's Dementia. 2011;7:270–9.CrossRef Albert M, DeKosky S, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's Dementia. 2011;7:270–9.CrossRef
10.
go back to reference Sachdev PS, Lipnicki D, Kochan NA, et al. The prevalence of mild cognitive impairment in diverse geographical and Ethnocultural regions: the COSMIC collaboration. PLoS One. 2015;10(11):1–19. Sachdev PS, Lipnicki D, Kochan NA, et al. The prevalence of mild cognitive impairment in diverse geographical and Ethnocultural regions: the COSMIC collaboration. PLoS One. 2015;10(11):1–19.
11.
go back to reference Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med. 2013;29(4):1–19.CrossRef Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med. 2013;29(4):1–19.CrossRef
12.
go back to reference Ritchie K, Carriere I, Ritchie CW, Berr C, Artero S, Ancelin M. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341(c3885):1–9. Ritchie K, Carriere I, Ritchie CW, Berr C, Artero S, Ancelin M. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341(c3885):1–9.
13.
go back to reference Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men: the Mayo Clinic study of aging. Neurology. 2010;75:889–97.CrossRef Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men: the Mayo Clinic study of aging. Neurology. 2010;75:889–97.CrossRef
14.
go back to reference Au B, Dale-McGrath S, Tierney M. Sex differences in the prevalence and incidence of mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2017;35:176–99.CrossRef Au B, Dale-McGrath S, Tierney M. Sex differences in the prevalence and incidence of mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2017;35:176–99.CrossRef
15.
go back to reference Luck T, Riedel-Heller SG, Luppa M, et al. Risk factors for incident mild cognitive impairment – results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). Acta Psychiatr Scand. 2010;121:260–72.CrossRef Luck T, Riedel-Heller SG, Luppa M, et al. Risk factors for incident mild cognitive impairment – results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). Acta Psychiatr Scand. 2010;121:260–72.CrossRef
16.
go back to reference Leng Y, McEvoy CT, Allen IE, Yaffe K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: a systematic review and meta-analysis. JAMA Neurology. 2017;74(10):1237–45.CrossRef Leng Y, McEvoy CT, Allen IE, Yaffe K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: a systematic review and meta-analysis. JAMA Neurology. 2017;74(10):1237–45.CrossRef
17.
go back to reference Emamian F, Khazaie H, Tahmasian M, et al. The association between obstructive sleep apnea and Alzheimer's disease: a meta-analysis perspective. Front Aging Neurosci. 2016;8:78.CrossRef Emamian F, Khazaie H, Tahmasian M, et al. The association between obstructive sleep apnea and Alzheimer's disease: a meta-analysis perspective. Front Aging Neurosci. 2016;8:78.CrossRef
18.
go back to reference Bucks RS, Olaithe M, Eastwood PR. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology. 2013;18:61–70.CrossRef Bucks RS, Olaithe M, Eastwood PR. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology. 2013;18:61–70.CrossRef
19.
go back to reference Beebe D, Groesz L, Wells C, Nichols A, McGee K. The neuropsychological effects of obstructive sleep apnea: a meta-analysis of norm-referenced and case-controlled data. Sleep. 2003;26(3):298–307.CrossRef Beebe D, Groesz L, Wells C, Nichols A, McGee K. The neuropsychological effects of obstructive sleep apnea: a meta-analysis of norm-referenced and case-controlled data. Sleep. 2003;26(3):298–307.CrossRef
20.
go back to reference Ferini Strambi L, Marelli S, Galbiati A, Castronovo C. Effects of continuous positive airway pressure on cognitition and neuroimaging data in sleep apnea. Int J Psychophysiol. 2013;89:203–12.CrossRef Ferini Strambi L, Marelli S, Galbiati A, Castronovo C. Effects of continuous positive airway pressure on cognitition and neuroimaging data in sleep apnea. Int J Psychophysiol. 2013;89:203–12.CrossRef
21.
go back to reference Zhou L, Chen P, Peng Y, Ouyang R. Role of oxidative stress in the neurocognitive dysfunction of obstructive sleep apnea syndrome. Oxid Med Cell Longev. 2016;2016:9626831. Zhou L, Chen P, Peng Y, Ouyang R. Role of oxidative stress in the neurocognitive dysfunction of obstructive sleep apnea syndrome. Oxid Med Cell Longev. 2016;2016:9626831.
22.
go back to reference Kerner NA, Roose SP. Obstructive sleep apnea is linked to depression and cognitive impairment: evidence and potential mechanisms. Am J Geriatr Psychiatry. 2016;24(6):496–508.CrossRef Kerner NA, Roose SP. Obstructive sleep apnea is linked to depression and cognitive impairment: evidence and potential mechanisms. Am J Geriatr Psychiatry. 2016;24(6):496–508.CrossRef
23.
go back to reference Moher D, Llberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.CrossRef Moher D, Llberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.CrossRef
24.
go back to reference Dlugaj M, Weinreich G, Weimar C, et al. Sleep-disordered breathing, sleep quality, and mild cognitive impairment in the general population. J Alzheimers Dis. 2014;41(2):479–97.CrossRef Dlugaj M, Weinreich G, Weimar C, et al. Sleep-disordered breathing, sleep quality, and mild cognitive impairment in the general population. J Alzheimers Dis. 2014;41(2):479–97.CrossRef
26.
go back to reference Guarnieri B, Adorni F, Musicco M, et al. Prevalence of sleep disturbances in mild cognitive impairment and dementing disorders: a multicenter Italian clinical cross-sectional study on 431 patients. Dement Geriatr Cogn Disord. 2012;33(1):50–8.CrossRef Guarnieri B, Adorni F, Musicco M, et al. Prevalence of sleep disturbances in mild cognitive impairment and dementing disorders: a multicenter Italian clinical cross-sectional study on 431 patients. Dement Geriatr Cogn Disord. 2012;33(1):50–8.CrossRef
27.
go back to reference Kim SJ, Lee JH, Lee DY, Jhoo JH, Woo JI. Neurocognitive dysfunction associated with sleep quality and sleep apnea in patients with mild cognitive impairment. Am J Geriatr Psychiatry. 2011;19(4):374–81.CrossRef Kim SJ, Lee JH, Lee DY, Jhoo JH, Woo JI. Neurocognitive dysfunction associated with sleep quality and sleep apnea in patients with mild cognitive impairment. Am J Geriatr Psychiatry. 2011;19(4):374–81.CrossRef
28.
go back to reference Wilson G, Terpening Z, Wong K, et al. Screening for sleep apnoea in mild cognitive impairment: the utility of the multivariable apnoea prediction index. Sleep Disorders. 2014;2014:945287.CrossRef Wilson G, Terpening Z, Wong K, et al. Screening for sleep apnoea in mild cognitive impairment: the utility of the multivariable apnoea prediction index. Sleep Disorders. 2014;2014:945287.CrossRef
29.
go back to reference Crawford-Achour E, Dauphinot V, Martin MS, et al. Protective effect of long-term CPAP therapy on cognitive performance in elderly patients with severe OSA: the PROOF study. J Clin Sleep Med. 2015;11(5):519–24.PubMedPubMedCentral Crawford-Achour E, Dauphinot V, Martin MS, et al. Protective effect of long-term CPAP therapy on cognitive performance in elderly patients with severe OSA: the PROOF study. J Clin Sleep Med. 2015;11(5):519–24.PubMedPubMedCentral
30.
go back to reference Peppard PE, Young T, Barnet J, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.CrossRef Peppard PE, Young T, Barnet J, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.CrossRef
31.
go back to reference Ho V, Crainiceanu C, Punjabi NM, Redline S, Gottlieb DJ. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas. Sleep. 2015;38(12):1887–92.CrossRef Ho V, Crainiceanu C, Punjabi NM, Redline S, Gottlieb DJ. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas. Sleep. 2015;38(12):1887–92.CrossRef
32.
go back to reference Kapur V, Auckley D, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479–504.CrossRef Kapur V, Auckley D, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479–504.CrossRef
33.
go back to reference Cho JH, Kim HJ. Validation of ApneaLink™ plus for the diagnosis of sleep apnea. Sleep Breath. 2017;21(3):799–807.CrossRef Cho JH, Kim HJ. Validation of ApneaLink™ plus for the diagnosis of sleep apnea. Sleep Breath. 2017;21(3):799–807.CrossRef
34.
go back to reference Pan YY, Deng Y, Xu X, Liu YP, Liu HG. Effects of continuous positive airway pressure on cognitive deficits in middle-aged patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials. Chin Med J. 2015;128(17):2365–73.CrossRef Pan YY, Deng Y, Xu X, Liu YP, Liu HG. Effects of continuous positive airway pressure on cognitive deficits in middle-aged patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials. Chin Med J. 2015;128(17):2365–73.CrossRef
35.
go back to reference Olaithe M, Bucks RS. Executive dysfunction in OSA before and after treatment: a meta-analysis. Sleep. 2013;36(9):1297–305.CrossRef Olaithe M, Bucks RS. Executive dysfunction in OSA before and after treatment: a meta-analysis. Sleep. 2013;36(9):1297–305.CrossRef
36.
go back to reference Kylstra W, Aaronson J, Hofman W, Schmand B. Neuropsychological functioning after CPAP treatment in obstructive sleep apnea: a meta-analysis. Sleep Med Rev. 2013;17:341–7.CrossRef Kylstra W, Aaronson J, Hofman W, Schmand B. Neuropsychological functioning after CPAP treatment in obstructive sleep apnea: a meta-analysis. Sleep Med Rev. 2013;17:341–7.CrossRef
37.
go back to reference Lal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012;141(6):1601–10.CrossRef Lal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012;141(6):1601–10.CrossRef
38.
go back to reference Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res. 2015;93(12):1778–94.CrossRef Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res. 2015;93(12):1778–94.CrossRef
39.
go back to reference Gosselin N, Baril AA, Osorio RS, Kaminska M, Carrier J. Obstructive sleep apnea and the risk of cognitive decline in older adults. Am J Respir Crit Care Med. 2019;199(2):142–8.CrossRef Gosselin N, Baril AA, Osorio RS, Kaminska M, Carrier J. Obstructive sleep apnea and the risk of cognitive decline in older adults. Am J Respir Crit Care Med. 2019;199(2):142–8.CrossRef
40.
go back to reference Weng H, Tsai Y-H, Chen C, et al. Mapping gray matter reductions in obstructive sleep apnea: an activation likelihood estimation meta-analysis. Sleep. 2014;37(1):167–75.CrossRef Weng H, Tsai Y-H, Chen C, et al. Mapping gray matter reductions in obstructive sleep apnea: an activation likelihood estimation meta-analysis. Sleep. 2014;37(1):167–75.CrossRef
41.
go back to reference Ayalon L, Ancoli-Israel S, Drummond SPA. Obstructive sleep apnea and age: a double insult to brain function? Am J Respir Crit Care Med. 2010;182:413–9.CrossRef Ayalon L, Ancoli-Israel S, Drummond SPA. Obstructive sleep apnea and age: a double insult to brain function? Am J Respir Crit Care Med. 2010;182:413–9.CrossRef
42.
go back to reference Liguori C, Mercuri NB, Izzi F, et al. Obstructive sleep apnea is associated with early but possibly modifiable alzheimer’s disease biomarkers changes. Sleep. 2017;40(5):1–10. Liguori C, Mercuri NB, Izzi F, et al. Obstructive sleep apnea is associated with early but possibly modifiable alzheimer’s disease biomarkers changes. Sleep. 2017;40(5):1–10.
43.
go back to reference Osorio RS, Ayappa I, Mantua J, et al. Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly individuals. Neurobiol Aging. 2014;35(6):1318–24.CrossRef Osorio RS, Ayappa I, Mantua J, et al. Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly individuals. Neurobiol Aging. 2014;35(6):1318–24.CrossRef
Metadata
Title
The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review
Authors
Talha Mubashir
Lusine Abrahamyan
Ayan Niazi
Deween Piyasena
Abdul A. Arif
Jean Wong
Ricardo S. Osorio
Clodagh M. Ryan
Frances Chung
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2019
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-019-1422-3

Other articles of this Issue 1/2019

BMC Neurology 1/2019 Go to the issue