Skip to main content
Top
Published in: International Orthopaedics 9/2014

01-09-2014 | Review Article

Skeletal tissue regeneration: where can hydrogels play a role?

Authors: Liliana S. Moreira Teixeira, Jennifer Patterson, Frank P. Luyten

Published in: International Orthopaedics | Issue 9/2014

Login to get access

Abstract

The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach.
Literature
1.
go back to reference Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5(3):451–462PubMed Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5(3):451–462PubMed
2.
go back to reference Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng B Rev 15(4):381–394 Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng B Rev 15(4):381–394
3.
go back to reference Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng B Rev 15(4):395–422 Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng B Rev 15(4):395–422
4.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMed Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMed
5.
go back to reference Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742PubMed Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742PubMed
6.
go back to reference Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215 Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215
7.
8.
go back to reference Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494PubMedCentralPubMed Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494PubMedCentralPubMed
9.
go back to reference Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643PubMed Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643PubMed
11.
go back to reference Patterson J, Martino M, Hubbell J (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22 Patterson J, Martino M, Hubbell J (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22
12.
go back to reference Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMed Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMed
13.
go back to reference Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55PubMed Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55PubMed
14.
go back to reference Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng B Rev 17(4):281–299 Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng B Rev 17(4):281–299
15.
go back to reference Wolberg AS, Campbell RA (2008) Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci 38(1):15–23PubMedCentralPubMed Wolberg AS, Campbell RA (2008) Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci 38(1):15–23PubMedCentralPubMed
16.
go back to reference Tan H, DeFail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92(3):979–987PubMedCentralPubMed Tan H, DeFail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92(3):979–987PubMedCentralPubMed
17.
go back to reference Schultz KM, Campo-Deano L, Baldwin AD, Kiick KL, Clasen C, Furst EM (2013) Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer (Guildf) 54(1):363–371 Schultz KM, Campo-Deano L, Baldwin AD, Kiick KL, Clasen C, Furst EM (2013) Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer (Guildf) 54(1):363–371
18.
go back to reference Koshy ST, Ferrante TC, Lewin SA, Mooney DJ (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8):2477–2487PubMed Koshy ST, Ferrante TC, Lewin SA, Mooney DJ (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8):2477–2487PubMed
19.
go back to reference Tan AR, Ifkovits JL, Baker BM, Brey DM, Mauck RL, Burdick JA (2008) Electrospinning of photocrosslinked and degradable fibrous scaffolds. J Biomed Mater Res A 87(4):1034–1043PubMed Tan AR, Ifkovits JL, Baker BM, Brey DM, Mauck RL, Burdick JA (2008) Electrospinning of photocrosslinked and degradable fibrous scaffolds. J Biomed Mater Res A 87(4):1034–1043PubMed
20.
go back to reference Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24(1):7–29PubMed Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24(1):7–29PubMed
21.
go back to reference Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451PubMed Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451PubMed
22.
go back to reference Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 109(48):19590–19595PubMedCentralPubMed Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 109(48):19590–19595PubMedCentralPubMed
23.
go back to reference Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770 Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770
24.
go back to reference Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1–3):199–209PubMed Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1–3):199–209PubMed
25.
go back to reference Benoit DS, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12(6):1663–1673PubMed Benoit DS, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12(6):1663–1673PubMed
26.
go back to reference Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40(4):399–416PubMed Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40(4):399–416PubMed
27.
go back to reference West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244 West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244
28.
go back to reference Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418PubMedCentralPubMed Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418PubMedCentralPubMed
29.
go back to reference Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845PubMed Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845PubMed
30.
go back to reference Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMed Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMed
31.
go back to reference Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81PubMed Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81PubMed
32.
go back to reference Soon AS, Stabenfeldt SE, Brown WE, Barker TH (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31(7):1944–1954PubMedCentralPubMed Soon AS, Stabenfeldt SE, Brown WE, Barker TH (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31(7):1944–1954PubMedCentralPubMed
33.
go back to reference Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci USA 95(12):7018–7023PubMedCentralPubMed Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci USA 95(12):7018–7023PubMedCentralPubMed
34.
go back to reference Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME (1999) A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 250(2):485–498PubMed Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME (1999) A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 250(2):485–498PubMed
35.
go back to reference Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27(33):5708–5714PubMed Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27(33):5708–5714PubMed
36.
go back to reference Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339PubMedCentralPubMed Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339PubMedCentralPubMed
37.
go back to reference Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262PubMed Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262PubMed
38.
go back to reference Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325–2331PubMedCentralPubMed Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325–2331PubMedCentralPubMed
39.
go back to reference Oss-Ronen L, Seliktar D (2011) Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomater 7(1):163–170PubMed Oss-Ronen L, Seliktar D (2011) Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomater 7(1):163–170PubMed
40.
go back to reference Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(6):1182–1191 Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(6):1182–1191
41.
go back to reference Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken) 297(1):26–35 Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken) 297(1):26–35
42.
go back to reference Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97PubMed Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97PubMed
43.
go back to reference Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105PubMed Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105PubMed
44.
go back to reference Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657PubMed Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657PubMed
45.
go back to reference Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W, Crawford RW, Hutmacher DW (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058 Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W, Crawford RW, Hutmacher DW (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058
47.
go back to reference Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324PubMed Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324PubMed
48.
go back to reference Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M (2011) Cartilage tissue engineering. Cartilage and bone development and its disorders. Endocr Dev 21:102–115PubMed Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M (2011) Cartilage tissue engineering. Cartilage and bone development and its disorders. Endocr Dev 21:102–115PubMed
49.
go back to reference Ingavle GC, Gehrke SH, Detamore MS (2014) The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35(11):3558–3570PubMed Ingavle GC, Gehrke SH, Detamore MS (2014) The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35(11):3558–3570PubMed
50.
go back to reference Mhanna R, Ozturk E, Vallmajo-Martin Q, Millan C, Muller M, Zenobi-Wong M (2014) GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng A 20(7–8):1165–1174 Mhanna R, Ozturk E, Vallmajo-Martin Q, Millan C, Muller M, Zenobi-Wong M (2014) GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng A 20(7–8):1165–1174
51.
go back to reference Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Ee PL, Yang YY (2010) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31(28):7298–7307PubMed Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Ee PL, Yang YY (2010) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31(28):7298–7307PubMed
52.
go back to reference Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377PubMedCentralPubMed Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377PubMedCentralPubMed
53.
go back to reference Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107(8):3293–3298PubMedCentralPubMed Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107(8):3293–3298PubMedCentralPubMed
54.
go back to reference Salinas CN, Anseth KS (2009) Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A 90(2):456–464PubMed Salinas CN, Anseth KS (2009) Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A 90(2):456–464PubMed
55.
go back to reference Connelly JT, Petrie TA, Garcia AJ, Levenston ME (2011) Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels. Eur Cells Mater 22:168–176 Connelly JT, Petrie TA, Garcia AJ, Levenston ME (2011) Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels. Eur Cells Mater 22:168–176
56.
go back to reference Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res Off Publ Orthop Res Soc 19(6):1098–1104 Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res Off Publ Orthop Res Soc 19(6):1098–1104
57.
go back to reference Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977PubMed Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977PubMed
58.
go back to reference Moreira Teixeira LS, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661PubMed Moreira Teixeira LS, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661PubMed
59.
go back to reference Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A 16(8):2429–2440 Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A 16(8):2429–2440
60.
go back to reference Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31(11):3103–3113PubMed Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31(11):3103–3113PubMed
61.
go back to reference Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2011) Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release Off J Control Release Soc 152(1):186–195 Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2011) Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release Off J Control Release Soc 152(1):186–195
62.
go back to reference Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551PubMed Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551PubMed
63.
go back to reference Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973PubMed Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973PubMed
64.
go back to reference Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122PubMedCentralPubMed Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122PubMedCentralPubMed
65.
go back to reference Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH (2013) An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 14(3):637–643PubMed Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH (2013) An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 14(3):637–643PubMed
66.
go back to reference Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5(167):167ra166 Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5(167):167ra166
67.
go back to reference Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A 18(5–6):533–545 Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A 18(5–6):533–545
68.
go back to reference Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806PubMed Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806PubMed
69.
go back to reference Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release Off J Control Release Soc 134(2):81–90 Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release Off J Control Release Soc 134(2):81–90
70.
go back to reference Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080PubMed Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080PubMed
71.
go back to reference Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546PubMed Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546PubMed
72.
go back to reference Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167PubMed Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167PubMed
73.
go back to reference Qu D, Li J, Li Y, Khadka A, Zuo Y, Wang H, Liu Y, Cheng L (2011) Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit. J Biomed Mater Res B Appl Biomater 96(1):9–15PubMed Qu D, Li J, Li Y, Khadka A, Zuo Y, Wang H, Liu Y, Cheng L (2011) Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit. J Biomed Mater Res B Appl Biomater 96(1):9–15PubMed
74.
go back to reference Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18(12):1608–1619 Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18(12):1608–1619
75.
go back to reference Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28(1):116–124 Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28(1):116–124
76.
go back to reference Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701PubMed Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701PubMed
77.
go back to reference Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106PubMed Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106PubMed
78.
go back to reference Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837PubMed Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837PubMed
79.
go back to reference Kisiel M, Klar AS, Martino MM, Ventura M, Hilborn J (2013) Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat. PLoS ONE 8(8):e71683PubMedCentralPubMed Kisiel M, Klar AS, Martino MM, Ventura M, Hilborn J (2013) Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat. PLoS ONE 8(8):e71683PubMedCentralPubMed
80.
go back to reference Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2013) Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198PubMed Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2013) Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198PubMed
81.
go back to reference Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32(32):8161–8171PubMed Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32(32):8161–8171PubMed
82.
go back to reference Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781PubMedCentralPubMed Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781PubMedCentralPubMed
83.
go back to reference Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95(3):673–681PubMed Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95(3):673–681PubMed
84.
go back to reference Tan S, Fang JY, Yang Z, Nimni ME, Han B (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35:5294–5306PubMed Tan S, Fang JY, Yang Z, Nimni ME, Han B (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35:5294–5306PubMed
85.
go back to reference Hokugo A, Saito T, Li A, Sato K, Tabata Y, Jarrahy R (2014) Stimulation of bone regeneration following the controlled release of water-insoluble oxysterol from biodegradable hydrogel. Biomaterials 35:5565–5571PubMed Hokugo A, Saito T, Li A, Sato K, Tabata Y, Jarrahy R (2014) Stimulation of bone regeneration following the controlled release of water-insoluble oxysterol from biodegradable hydrogel. Biomaterials 35:5565–5571PubMed
86.
go back to reference Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518PubMed Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518PubMed
87.
go back to reference Mariner PD, Wudel JM, Miller DE, Genova EE, Streubel SO, Anseth KS (2013) Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 31:401–406PubMedCentralPubMed Mariner PD, Wudel JM, Miller DE, Genova EE, Streubel SO, Anseth KS (2013) Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 31:401–406PubMedCentralPubMed
88.
go back to reference Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, Garcia AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461PubMed Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, Garcia AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461PubMed
89.
go back to reference Martinez-Sanz E, Varghese OP, Kisiel M, Engstrand T, Reich KM, Bohner M, Jonsson KB, Kohler T, Muller R, Ossipov DA, Hilborn J (2012) Minimally invasive mandibular bone augmentation using injectable hydrogels. J Tissue Eng Regen Med 6(Suppl 3):s15–s23PubMed Martinez-Sanz E, Varghese OP, Kisiel M, Engstrand T, Reich KM, Bohner M, Jonsson KB, Kohler T, Muller R, Ossipov DA, Hilborn J (2012) Minimally invasive mandibular bone augmentation using injectable hydrogels. J Tissue Eng Regen Med 6(Suppl 3):s15–s23PubMed
90.
go back to reference Docherty-Skogh AC, Bergman K, Waern MJ, Ekman S, Hultenby K, Ossipov D, Hilborn J, Bowden T, Engstrand T (2010) Bone morphogenetic protein-2 delivered by hyaluronan-based hydrogel induces massive bone formation and healing of cranial defects in minipigs. Plast Reconstr Surg 125(5):1383–1392PubMed Docherty-Skogh AC, Bergman K, Waern MJ, Ekman S, Hultenby K, Ossipov D, Hilborn J, Bowden T, Engstrand T (2010) Bone morphogenetic protein-2 delivered by hyaluronan-based hydrogel induces massive bone formation and healing of cranial defects in minipigs. Plast Reconstr Surg 125(5):1383–1392PubMed
91.
go back to reference Hulsart-Billstrom G, Piskounova S, Gedda L, Andersson BM, Bergman K, Hilborn J, Larsson S, Bowden T (2013) Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. J Mater Sci Mater Med 24(5):1201–1209PubMed Hulsart-Billstrom G, Piskounova S, Gedda L, Andersson BM, Bergman K, Hilborn J, Larsson S, Bowden T (2013) Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. J Mater Sci Mater Med 24(5):1201–1209PubMed
92.
go back to reference Xu C, Wang Y, Yu X, Chen X, Li X, Yang X, Li S, Zhang X, Xiang AP (2009) Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering. J Biomed Mater Res A 88(1):264–273PubMed Xu C, Wang Y, Yu X, Chen X, Li X, Yang X, Li S, Zhang X, Xiang AP (2009) Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering. J Biomed Mater Res A 88(1):264–273PubMed
93.
go back to reference Xu C, Su P, Wang Y, Chen X, Meng Y, Liu C, Yu X, Yang X, Yu W, Zhang X, Xiang AP (2010) A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. J Biomed Mater Res A 95(2):495–503PubMed Xu C, Su P, Wang Y, Chen X, Meng Y, Liu C, Yu X, Yang X, Yu W, Zhang X, Xiang AP (2010) A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. J Biomed Mater Res A 95(2):495–503PubMed
94.
go back to reference Chen JP, Tsai MJ, Liao HT (2013) Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B: Biointerfaces 110:120–129PubMed Chen JP, Tsai MJ, Liao HT (2013) Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B: Biointerfaces 110:120–129PubMed
95.
go back to reference Ma K, Cai X, Zhou Y, Zhang Z, Jiang T, Wang Y (2014) Osteogenic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed Mater 9. doi:10.1088/1748-6041/9/1/015008 Ma K, Cai X, Zhou Y, Zhang Z, Jiang T, Wang Y (2014) Osteogenic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed Mater 9. doi:10.​1088/​1748-6041/​9/​1/​015008
96.
go back to reference Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, Cho DW, Rhie JW, Lee SH (2011) Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306PubMed Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, Cho DW, Rhie JW, Lee SH (2011) Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306PubMed
97.
go back to reference Hoffman MD, Xie C, Zhang X, Benoit DS (2013) The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 34(35):8887–8898PubMed Hoffman MD, Xie C, Zhang X, Benoit DS (2013) The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 34(35):8887–8898PubMed
98.
go back to reference Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol J Int Soc Matrix Biol 27(1):12–21 Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol J Int Soc Matrix Biol 27(1):12–21
99.
go back to reference Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104(4):1014–1022PubMed Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104(4):1014–1022PubMed
100.
go back to reference Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189PubMedCentralPubMed Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189PubMedCentralPubMed
101.
go back to reference Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78(1):1–11PubMed Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78(1):1–11PubMed
102.
go back to reference Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166 Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166
103.
go back to reference Melrose J, Chuang C, Whitelock J (2008) Tissue engineering log cartilages using biomatrices. J Chem Technol Biotechnol 83(4):444–463 Melrose J, Chuang C, Whitelock J (2008) Tissue engineering log cartilages using biomatrices. J Chem Technol Biotechnol 83(4):444–463
104.
go back to reference Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMed Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMed
105.
go back to reference Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359PubMed Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359PubMed
106.
go back to reference Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233PubMed Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233PubMed
107.
go back to reference Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5(1):16–22PubMedCentralPubMed Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5(1):16–22PubMedCentralPubMed
108.
go back to reference Minegishi Y, Hosokawa K, Tsumaki N (2013) Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarth Cartil/OARS, Osteoarthr Res Soc 21(12):1968–1975 Minegishi Y, Hosokawa K, Tsumaki N (2013) Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarth Cartil/OARS, Osteoarthr Res Soc 21(12):1968–1975
109.
go back to reference Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335PubMed Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335PubMed
110.
go back to reference Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 11(12):879–890 Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 11(12):879–890
111.
go back to reference Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M (2012) High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur Cells Mater 23:387–399 Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M (2012) High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur Cells Mater 23:387–399
112.
go back to reference Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115PubMed Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115PubMed
113.
go back to reference Johnson LL, Verioti C, Gelber J, Spector M, D’Lima D, Pittsley A (2011) The pathology of the end-stage osteoarthritic lesion of the knee: potential role in cartilage repair. Knee 18(6):402–406PubMed Johnson LL, Verioti C, Gelber J, Spector M, D’Lima D, Pittsley A (2011) The pathology of the end-stage osteoarthritic lesion of the knee: potential role in cartilage repair. Knee 18(6):402–406PubMed
114.
go back to reference Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJ (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng B Rev 16(4):385–395 Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJ (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng B Rev 16(4):385–395
115.
go back to reference Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194PubMed Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194PubMed
116.
go back to reference Leijten JC, Moreira Teixeira LS, Landman EB, van Blitterswijk CA, Karperien M (2012) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS ONE 7(11):e49896PubMedCentralPubMed Leijten JC, Moreira Teixeira LS, Landman EB, van Blitterswijk CA, Karperien M (2012) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS ONE 7(11):e49896PubMedCentralPubMed
117.
go back to reference Zhu M, Feng Q, Bian L (2014) Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomater 10(3):1333–1340PubMed Zhu M, Feng Q, Bian L (2014) Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomater 10(3):1333–1340PubMed
118.
go back to reference Weiss HE, Roberts SJ, Schrooten J, Luyten FP (2012) A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng A 18(13–14):1334–1343 Weiss HE, Roberts SJ, Schrooten J, Luyten FP (2012) A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng A 18(13–14):1334–1343
119.
go back to reference Moreira Teixeira LS, Bijl S, Pully VV, Otto C, Jin R, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 33(11):3164–3174PubMed Moreira Teixeira LS, Bijl S, Pully VV, Otto C, Jin R, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 33(11):3164–3174PubMed
120.
go back to reference Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873PubMed Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873PubMed
121.
go back to reference Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210PubMed Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210PubMed
122.
go back to reference Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24–31PubMed Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24–31PubMed
123.
go back to reference Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7(4):1441–1451 Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7(4):1441–1451
124.
go back to reference Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293PubMed Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293PubMed
125.
go back to reference Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng A 17(21–22):2845–2855 Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng A 17(21–22):2845–2855
126.
go back to reference Baldini A, Zaffe D, Nicolini G (2010) Bone-defects healing by high-molecular hyaluronic acid: preliminary results. Ann Stomatol (Roma) 1(1):2–7 Baldini A, Zaffe D, Nicolini G (2010) Bone-defects healing by high-molecular hyaluronic acid: preliminary results. Ann Stomatol (Roma) 1(1):2–7
127.
go back to reference Ballini A, Cantore S, Capodiferro S, Grassi FR (2009) Esterified hyaluronic acid and autologous bone in the surgical correction of the infra-bone defects. Int J Med Sci 6(2):65–71PubMedCentralPubMed Ballini A, Cantore S, Capodiferro S, Grassi FR (2009) Esterified hyaluronic acid and autologous bone in the surgical correction of the infra-bone defects. Int J Med Sci 6(2):65–71PubMedCentralPubMed
128.
go back to reference Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74PubMedCentralPubMed Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74PubMedCentralPubMed
129.
go back to reference Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11:123–131PubMedCentralPubMed Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11:123–131PubMedCentralPubMed
130.
go back to reference Sonnet C, Simpson CL, Olabisi RM, Sullivan K, Lazard Z, Gugala Z, Peroni JF, Weh JM, Davis AR, West JL, Olmsted-Davis EA (2012) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31:1597–1604 Sonnet C, Simpson CL, Olabisi RM, Sullivan K, Lazard Z, Gugala Z, Peroni JF, Weh JM, Davis AR, West JL, Olmsted-Davis EA (2012) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31:1597–1604
131.
go back to reference Killion JA, Geever LM, Devine DM, Higginbotham CL (2014) Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 28(8):1274–1283PubMed Killion JA, Geever LM, Devine DM, Higginbotham CL (2014) Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 28(8):1274–1283PubMed
132.
go back to reference Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86PubMed Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86PubMed
133.
go back to reference Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11(3–4):535–545PubMed Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11(3–4):535–545PubMed
134.
go back to reference Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765PubMed Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765PubMed
135.
go back to reference Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188PubMed Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188PubMed
136.
go back to reference Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8(3):209–218PubMed Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8(3):209–218PubMed
137.
go back to reference Spitters TW, Leijten JC, Deus FD, Costa IB, van Apeldoorn AA, van Blitterswijk CA, Karperien M (2013) A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng C Methods 19(10):774–783 Spitters TW, Leijten JC, Deus FD, Costa IB, van Apeldoorn AA, van Blitterswijk CA, Karperien M (2013) A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng C Methods 19(10):774–783
138.
go back to reference Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185PubMed Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185PubMed
139.
go back to reference Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr cartil/OARS, Osteoarthr Res Soc 18(5):714–723 Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr cartil/OARS, Osteoarthr Res Soc 18(5):714–723
140.
go back to reference LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21(24):2575–2587PubMed LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21(24):2575–2587PubMed
141.
go back to reference Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J (2013) Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng C Methods 19(8):596–609 Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J (2013) Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng C Methods 19(8):596–609
142.
go back to reference Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267PubMed Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267PubMed
143.
go back to reference Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246 Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246
144.
go back to reference Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20(5–6):481–488PubMed Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20(5–6):481–488PubMed
145.
go back to reference Bostrom MP, Saleh KJ, Einhorn TA (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin N Am 30(4):647–658 Bostrom MP, Saleh KJ, Einhorn TA (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin N Am 30(4):647–658
146.
go back to reference Elisseeff J, Puleo C, Yang F, Sharma B (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res 8(3):150–161 Elisseeff J, Puleo C, Yang F, Sharma B (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res 8(3):150–161
147.
go back to reference Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16(4 Suppl):S107–S113PubMed Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16(4 Suppl):S107–S113PubMed
148.
go back to reference Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565PubMed Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565PubMed
149.
go back to reference Erben RG, Silva-Lima B, Reischl I, Steinhoff G, Tiedemann G, Dalemans W, Vos A, Janssen RT, Le Blanc K, van Osch GP, Luyten FP (2014) White paper on how to go forward with cell-based advanced therapies in Europe. Tissue Eng A. doi:10.1089/ten.TEA.2013.0589 Erben RG, Silva-Lima B, Reischl I, Steinhoff G, Tiedemann G, Dalemans W, Vos A, Janssen RT, Le Blanc K, van Osch GP, Luyten FP (2014) White paper on how to go forward with cell-based advanced therapies in Europe. Tissue Eng A. doi:10.​1089/​ten.​TEA.​2013.​0589
Metadata
Title
Skeletal tissue regeneration: where can hydrogels play a role?
Authors
Liliana S. Moreira Teixeira
Jennifer Patterson
Frank P. Luyten
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
International Orthopaedics / Issue 9/2014
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-014-2402-2

Other articles of this Issue 9/2014

International Orthopaedics 9/2014 Go to the issue