Skip to main content
Top

Open Access 27-04-2024 | Amyotrophic Lateral Sclerosis | Review Article

Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches

Authors: Gokhan Burcin Kubat, Pasquale Picone

Published in: Neurological Sciences

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Literature
1.
go back to reference Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238PubMedCrossRef Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238PubMedCrossRef
2.
go back to reference Shefner JM et al (2023) Skeletal muscle in amyotrophic lateral sclerosis. Brain 2(11):4425–4436 Shefner JM et al (2023) Skeletal muscle in amyotrophic lateral sclerosis. Brain 2(11):4425–4436
4.
go back to reference Zhu XH, Lu M, Chen W (2018) Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear (2)H, (17)O and (31)P MRS at ultra-high field. J Magn Reson 292:155–170PubMedCrossRefPubMedCentral Zhu XH, Lu M, Chen W (2018) Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear (2)H, (17)O and (31)P MRS at ultra-high field. J Magn Reson 292:155–170PubMedCrossRefPubMedCentral
5.
6.
go back to reference Peter RS et al (2017) Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. Eur J Epidemiol 32(10):901–908PubMedCrossRef Peter RS et al (2017) Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. Eur J Epidemiol 32(10):901–908PubMedCrossRef
7.
go back to reference Tzeplaeff L et al (2023) Current state and future directions in the therapy of ALS. Cells 12(11):1523 Tzeplaeff L et al (2023) Current state and future directions in the therapy of ALS. Cells 12(11):1523
8.
go back to reference Lynch K (2023) Optimizing pharmacologic treatment for ALS to improve outcomes and quality of life. Am J Manag Care 29(7 Suppl):S112-s119PubMed Lynch K (2023) Optimizing pharmacologic treatment for ALS to improve outcomes and quality of life. Am J Manag Care 29(7 Suppl):S112-s119PubMed
9.
go back to reference Kubat GB et al (2023) Mitochondrial dysfunction and skeletal muscle atrophy: causes, mechanisms, and treatment strategies. Mitochondrion 72:33–58PubMedCrossRef Kubat GB et al (2023) Mitochondrial dysfunction and skeletal muscle atrophy: causes, mechanisms, and treatment strategies. Mitochondrion 72:33–58PubMedCrossRef
10.
go back to reference Beers DR, Appel SH (2019) Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 18(2):211–220PubMedCrossRef Beers DR, Appel SH (2019) Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 18(2):211–220PubMedCrossRef
11.
go back to reference Oya R et al (2022) Gene transfer of skeletal muscle-type myosin light chain kinase via adeno-associated virus 6 improves muscle functions in an amyotrophic lateral sclerosis mouse model. Int J Mol Sci 23(3):1747 Oya R et al (2022) Gene transfer of skeletal muscle-type myosin light chain kinase via adeno-associated virus 6 improves muscle functions in an amyotrophic lateral sclerosis mouse model. Int J Mol Sci 23(3):1747
12.
go back to reference Ulger O, Kubat GB (2022) Therapeutic applications of mitochondrial transplantation. Biochimie 195:1–15PubMedCrossRef Ulger O, Kubat GB (2022) Therapeutic applications of mitochondrial transplantation. Biochimie 195:1–15PubMedCrossRef
16.
go back to reference Rosen DR et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62PubMedCrossRef Rosen DR et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62PubMedCrossRef
17.
go back to reference Mondola P et al (2007) A new perspective on the role of CuZn superoxide dismutase (SOD1). Open Life Sciences 2(3):337–350CrossRef Mondola P et al (2007) A new perspective on the role of CuZn superoxide dismutase (SOD1). Open Life Sciences 2(3):337–350CrossRef
18.
go back to reference Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641PubMedCrossRef Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641PubMedCrossRef
19.
go back to reference Ruf WP et al (2023) Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun 5(3):fcad152 Ruf WP et al (2023) Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun 5(3):fcad152
20.
go back to reference Grassano M et al (2022) Systematic evaluation of genetic mutations in ALS: a population-based study. J Neurol Neurosurg Psychiatry 93(11):1190–1193PubMedCrossRef Grassano M et al (2022) Systematic evaluation of genetic mutations in ALS: a population-based study. J Neurol Neurosurg Psychiatry 93(11):1190–1193PubMedCrossRef
21.
go back to reference Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933PubMedCrossRef Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933PubMedCrossRef
22.
go back to reference Chen J et al (2021) Amyotrophic lateral sclerosis (ALS): stressed by dysfunctional mitochondria-endoplasmic reticulum contacts (MERCs). Cells 10(7):1789 Chen J et al (2021) Amyotrophic lateral sclerosis (ALS): stressed by dysfunctional mitochondria-endoplasmic reticulum contacts (MERCs). Cells 10(7):1789
23.
go back to reference Damiano M et al (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361PubMedCrossRef Damiano M et al (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361PubMedCrossRef
24.
go back to reference Vande Velde C et al (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS ONE 6(7):e22031PubMedCrossRefPubMedCentral Vande Velde C et al (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS ONE 6(7):e22031PubMedCrossRefPubMedCentral
25.
go back to reference Atsumi T (1981) The ultrastructure of intramuscular nerves in amyotrophic lateral sclerosis. Acta Neuropathol 55(3):193–198PubMedCrossRef Atsumi T (1981) The ultrastructure of intramuscular nerves in amyotrophic lateral sclerosis. Acta Neuropathol 55(3):193–198PubMedCrossRef
26.
go back to reference Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66(1):10–16PubMedCrossRef Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66(1):10–16PubMedCrossRef
27.
go back to reference Magrané J et al (2014) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413–1424PubMedCrossRef Magrané J et al (2014) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413–1424PubMedCrossRef
28.
go back to reference Bannwarth S et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(Pt 8):2329–2345PubMedCrossRefPubMedCentral Bannwarth S et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(Pt 8):2329–2345PubMedCrossRefPubMedCentral
29.
go back to reference Ferri A et al (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci U S A 103(37):13860–13865PubMedCrossRefPubMedCentral Ferri A et al (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci U S A 103(37):13860–13865PubMedCrossRefPubMedCentral
30.
go back to reference Pickles S et al (2013) Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 22(19):3947–3959PubMedCrossRef Pickles S et al (2013) Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 22(19):3947–3959PubMedCrossRef
31.
go back to reference Alqahtani T et al (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis -an updated review. Mitochondrion 71:83–92PubMedCrossRef Alqahtani T et al (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis -an updated review. Mitochondrion 71:83–92PubMedCrossRef
32.
go back to reference Cunha-Oliveira T et al (2020) Oxidative stress in amyotrophic lateral sclerosis: pathophysiology and opportunities for pharmacological intervention. Oxid Med Cell Longev 2020:5021694PubMedCrossRefPubMedCentral Cunha-Oliveira T et al (2020) Oxidative stress in amyotrophic lateral sclerosis: pathophysiology and opportunities for pharmacological intervention. Oxid Med Cell Longev 2020:5021694PubMedCrossRefPubMedCentral
33.
34.
go back to reference Hemerková P, Vališ M (2021) Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: antioxidant metalloenzymes and therapeutic strategies. Biomolecules 11(3):437 Hemerková P, Vališ M (2021) Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: antioxidant metalloenzymes and therapeutic strategies. Biomolecules 11(3):437
35.
go back to reference Brunette S et al (2023) Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. Microb Cell 10(8):157–169PubMedCrossRefPubMedCentral Brunette S et al (2023) Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. Microb Cell 10(8):157–169PubMedCrossRefPubMedCentral
36.
go back to reference Fecto F et al (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68(11):1440–1446PubMedCrossRef Fecto F et al (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68(11):1440–1446PubMedCrossRef
37.
go back to reference Magrì A et al (2023) ERK1/2-dependent TSPO overactivation associates with the loss of mitophagy and mitochondrial respiration in ALS. Cell Death Dis 14(2):122PubMedCrossRefPubMedCentral Magrì A et al (2023) ERK1/2-dependent TSPO overactivation associates with the loss of mitophagy and mitochondrial respiration in ALS. Cell Death Dis 14(2):122PubMedCrossRefPubMedCentral
39.
go back to reference Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879PubMedCrossRef Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879PubMedCrossRef
40.
go back to reference Liu W et al (2013) Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis. Curr Neurovasc Res 10(3):222–230PubMedCrossRef Liu W et al (2013) Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis. Curr Neurovasc Res 10(3):222–230PubMedCrossRef
41.
go back to reference Xu YF et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859PubMedCrossRefPubMedCentral Xu YF et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859PubMedCrossRefPubMedCentral
42.
43.
go back to reference Margotta C et al (2023) Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflamm Regen 43(1):19PubMedCrossRefPubMedCentral Margotta C et al (2023) Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflamm Regen 43(1):19PubMedCrossRefPubMedCentral
44.
go back to reference Lepore E et al (2019) Neuromuscular junction as an entity of nerve-muscle communication. Cells 8(8):906 Lepore E et al (2019) Neuromuscular junction as an entity of nerve-muscle communication. Cells 8(8):906
45.
go back to reference Iwasaki Y et al (1991) Muscle morphometry in amyotrophic lateral sclerosis. Int J Neurosci 58(3–4):165–170PubMedCrossRef Iwasaki Y et al (1991) Muscle morphometry in amyotrophic lateral sclerosis. Int J Neurosci 58(3–4):165–170PubMedCrossRef
46.
go back to reference Wang J, Fry CME, Walker CL (2019) Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep 9(1):3920PubMedCrossRefPubMedCentral Wang J, Fry CME, Walker CL (2019) Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep 9(1):3920PubMedCrossRefPubMedCentral
47.
go back to reference Léger B et al (2006) Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. FASEB J 20(3):583–585PubMedCrossRef Léger B et al (2006) Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. FASEB J 20(3):583–585PubMedCrossRef
48.
go back to reference Dobrowolny G, Aucello M, Musarò A (2011) Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle 1(1):3PubMedCrossRefPubMedCentral Dobrowolny G, Aucello M, Musarò A (2011) Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle 1(1):3PubMedCrossRefPubMedCentral
49.
go back to reference Renzini A et al (2022) Sex and HDAC4 differently affect the pathophysiology of amyotrophic lateral sclerosis in SOD1-G93A mice. Int J Mol Sci 24(1):98 Renzini A et al (2022) Sex and HDAC4 differently affect the pathophysiology of amyotrophic lateral sclerosis in SOD1-G93A mice. Int J Mol Sci 24(1):98
50.
go back to reference Thau N et al (2012) Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J Neuropathol Exp Neurol 71(12):1064–1074PubMedCrossRef Thau N et al (2012) Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J Neuropathol Exp Neurol 71(12):1064–1074PubMedCrossRef
51.
go back to reference Picchiarelli G et al (2019) FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci 22(11):1793–1805PubMedCrossRefPubMedCentral Picchiarelli G et al (2019) FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci 22(11):1793–1805PubMedCrossRefPubMedCentral
52.
go back to reference Yu M et al (2022) Widespread mislocalization of FUS is associated with mitochondrial abnormalities in skeletal muscle in amyotrophic lateral sclerosis with FUS mutations. J Neuropathol Exp Neurol 81(3):172–181PubMedCrossRef Yu M et al (2022) Widespread mislocalization of FUS is associated with mitochondrial abnormalities in skeletal muscle in amyotrophic lateral sclerosis with FUS mutations. J Neuropathol Exp Neurol 81(3):172–181PubMedCrossRef
53.
54.
go back to reference Tsitkanou S, Della Gatta PA, Russell AP (2016) Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS. Front Physiol 7:403PubMedCrossRefPubMedCentral Tsitkanou S, Della Gatta PA, Russell AP (2016) Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS. Front Physiol 7:403PubMedCrossRefPubMedCentral
55.
go back to reference Scaramozza A et al (2014) Skeletal muscle satellite cells in amyotrophic lateral sclerosis. Ultrastruct Pathol 38(5):295–302PubMedCrossRef Scaramozza A et al (2014) Skeletal muscle satellite cells in amyotrophic lateral sclerosis. Ultrastruct Pathol 38(5):295–302PubMedCrossRef
56.
go back to reference Cappello V, Francolini M (2017) Neuromuscular junction dismantling in amyotrophic lateral sclerosis. Int J Mol Sci 18(10):2092 Cappello V, Francolini M (2017) Neuromuscular junction dismantling in amyotrophic lateral sclerosis. Int J Mol Sci 18(10):2092
58.
go back to reference Ganassi M, Muntoni F, Zammit PS (2022) Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 411(1):112906PubMedCrossRefPubMedCentral Ganassi M, Muntoni F, Zammit PS (2022) Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 411(1):112906PubMedCrossRefPubMedCentral
60.
go back to reference Liu W et al (2015) Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. Elife 4:e09221 Liu W et al (2015) Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. Elife 4:e09221
61.
go back to reference Pradat PF et al (2011) Abnormalities of satellite cells function in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(4):264–271PubMedCrossRef Pradat PF et al (2011) Abnormalities of satellite cells function in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(4):264–271PubMedCrossRef
63.
go back to reference Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65(8):733–739PubMedCrossRef Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65(8):733–739PubMedCrossRef
65.
go back to reference Genin EC et al (2019) Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10(S59L/+) mouse. Acta Neuropathol 138(1):123–145PubMedCrossRef Genin EC et al (2019) Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10(S59L/+) mouse. Acta Neuropathol 138(1):123–145PubMedCrossRef
66.
go back to reference Waegaert R et al (2022) Alteration of the neuromuscular junction and modifications of muscle metabolism in response to neuron-restricted expression of the CHMP2B(intron5) mutant in a mouse model of ALS-FTD syndrome. Biomolecules 12(4):497 Waegaert R et al (2022) Alteration of the neuromuscular junction and modifications of muscle metabolism in response to neuron-restricted expression of the CHMP2B(intron5) mutant in a mouse model of ALS-FTD syndrome. Biomolecules 12(4):497
67.
go back to reference Arnold ES et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A 110(8):E736–E745PubMedCrossRefPubMedCentral Arnold ES et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A 110(8):E736–E745PubMedCrossRefPubMedCentral
68.
go back to reference Moller A et al (2017) Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum Mol Genet 26(23):4668–4679PubMedCrossRefPubMedCentral Moller A et al (2017) Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum Mol Genet 26(23):4668–4679PubMedCrossRefPubMedCentral
69.
go back to reference Mórotz GM et al (2012) Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum Mol Genet 21(9):1979–1988PubMedCrossRefPubMedCentral Mórotz GM et al (2012) Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum Mol Genet 21(9):1979–1988PubMedCrossRefPubMedCentral
70.
go back to reference Akın Ş, Kubat GB, Demirel HA (2021) Exercise, mitochondrial biogenesis and disuse-induced atrophy. Spor Hekimliği Dergisi 56(2):091–097 Akın Ş, Kubat GB, Demirel HA (2021) Exercise, mitochondrial biogenesis and disuse-induced atrophy. Spor Hekimliği Dergisi 56(2):091–097
71.
go back to reference Garber CE et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–59PubMedCrossRef Garber CE et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–59PubMedCrossRef
72.
go back to reference Cieminski K et al (2021) Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 11(1):20899PubMedCrossRefPubMedCentral Cieminski K et al (2021) Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 11(1):20899PubMedCrossRefPubMedCentral
73.
go back to reference Desseille C et al (2017) Specific physical exercise improves energetic metabolism in the skeletal muscle of amyotrophic-lateral- sclerosis mice. Front Mol Neurosci 10:332PubMedCrossRefPubMedCentral Desseille C et al (2017) Specific physical exercise improves energetic metabolism in the skeletal muscle of amyotrophic-lateral- sclerosis mice. Front Mol Neurosci 10:332PubMedCrossRefPubMedCentral
74.
go back to reference Kaspar BK et al (2005) Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57(5):649–655PubMedCrossRef Kaspar BK et al (2005) Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57(5):649–655PubMedCrossRef
75.
go back to reference Kirkinezos IG et al (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53(6):804–807PubMedCrossRef Kirkinezos IG et al (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53(6):804–807PubMedCrossRef
76.
go back to reference Tsitkanou S et al (2019) The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front Neurol 10:783PubMedCrossRefPubMedCentral Tsitkanou S et al (2019) The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front Neurol 10:783PubMedCrossRefPubMedCentral
77.
go back to reference Mahoney DJ et al (2004) Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve 29(5):656–662PubMedCrossRef Mahoney DJ et al (2004) Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve 29(5):656–662PubMedCrossRef
78.
go back to reference Carreras I et al (2010) Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192–201PubMedCrossRef Carreras I et al (2010) Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192–201PubMedCrossRef
79.
go back to reference Golini E et al (2023) Wheel running adversely affects disease onset and neuromuscular interplay in amyotrophic lateral sclerosis slow progression mouse model. Curr Neurovasc Res 20(3):362–376PubMedCrossRef Golini E et al (2023) Wheel running adversely affects disease onset and neuromuscular interplay in amyotrophic lateral sclerosis slow progression mouse model. Curr Neurovasc Res 20(3):362–376PubMedCrossRef
80.
go back to reference Julian TH et al (2021) Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68:103397PubMedCrossRefPubMedCentral Julian TH et al (2021) Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68:103397PubMedCrossRefPubMedCentral
82.
go back to reference Cho H, Shukla S (2020) Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals (Basel) 14(1):29 Cho H, Shukla S (2020) Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals (Basel) 14(1):29
83.
go back to reference Paganoni S et al (2022) Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J Neurol Neurosurg Psychiatry 93(8):871–875PubMedCrossRef Paganoni S et al (2022) Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J Neurol Neurosurg Psychiatry 93(8):871–875PubMedCrossRef
84.
go back to reference Cappella M et al (2019) Gene therapy for ALS-A perspective. Int J Mol Sci 20(18):4388 Cappella M et al (2019) Gene therapy for ALS-A perspective. Int J Mol Sci 20(18):4388
85.
go back to reference Ketabforoush A et al (2023) Masitinib: the promising actor in the next season of the amyotrophic lateral sclerosis treatment series. Biomed Pharmacother 160:114378PubMedCrossRef Ketabforoush A et al (2023) Masitinib: the promising actor in the next season of the amyotrophic lateral sclerosis treatment series. Biomed Pharmacother 160:114378PubMedCrossRef
86.
go back to reference Zhou Y et al (2023) Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B 13(2):577–597PubMedCrossRef Zhou Y et al (2023) Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B 13(2):577–597PubMedCrossRef
87.
go back to reference Liu X et al (2022) Pharmacological inhibition of ALCAT1 mitigates amyotrophic lateral sclerosis by attenuating SOD1 protein aggregation. Mol Metab 63:101536PubMedCrossRefPubMedCentral Liu X et al (2022) Pharmacological inhibition of ALCAT1 mitigates amyotrophic lateral sclerosis by attenuating SOD1 protein aggregation. Mol Metab 63:101536PubMedCrossRefPubMedCentral
88.
go back to reference Fabbrizio P et al (2023) Intramuscular IL-10 administration enhances the activity of myogenic precursor cells and improves motor function in ALS mouse model. Cells 12(7):1016 Fabbrizio P et al (2023) Intramuscular IL-10 administration enhances the activity of myogenic precursor cells and improves motor function in ALS mouse model. Cells 12(7):1016
89.
go back to reference Tallon C et al (2022) Dendrimer-2PMPA delays muscle function loss and denervation in a murine model of amyotrophic lateral sclerosis. Neurotherapeutics 19(1):274–288PubMedCrossRefPubMedCentral Tallon C et al (2022) Dendrimer-2PMPA delays muscle function loss and denervation in a murine model of amyotrophic lateral sclerosis. Neurotherapeutics 19(1):274–288PubMedCrossRefPubMedCentral
90.
go back to reference Lee SH, Cai M, Yang EJ (2021) Anti-inflammatory effects of a novel herbal extract in the muscle and spinal cord of an amyotrophic lateral sclerosis animal model. Front Neurosci 15:743705PubMedCrossRefPubMedCentral Lee SH, Cai M, Yang EJ (2021) Anti-inflammatory effects of a novel herbal extract in the muscle and spinal cord of an amyotrophic lateral sclerosis animal model. Front Neurosci 15:743705PubMedCrossRefPubMedCentral
91.
go back to reference Nam SM et al (2021) Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor. J Ginseng Res 45(3):390–400PubMedCrossRef Nam SM et al (2021) Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor. J Ginseng Res 45(3):390–400PubMedCrossRef
92.
go back to reference Dobrowolny G et al (2018) Muscle expression of SOD1(G93A) triggers the dismantlement of neuromuscular junction via PKC-theta. Antioxid Redox Signal 28(12):1105–1119PubMedCrossRef Dobrowolny G et al (2018) Muscle expression of SOD1(G93A) triggers the dismantlement of neuromuscular junction via PKC-theta. Antioxid Redox Signal 28(12):1105–1119PubMedCrossRef
93.
go back to reference Matthews RT et al (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95(15):8892–8897PubMedCrossRefPubMedCentral Matthews RT et al (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95(15):8892–8897PubMedCrossRefPubMedCentral
94.
go back to reference Martin LJ (2010) Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 13(8):568–580PubMedPubMedCentral Martin LJ (2010) Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 13(8):568–580PubMedPubMedCentral
95.
go back to reference Wang H et al (2007) Nortriptyline delays disease onset in models of chronic neurodegeneration. Eur J Neurosci 26(3):633–641PubMedCrossRef Wang H et al (2007) Nortriptyline delays disease onset in models of chronic neurodegeneration. Eur J Neurosci 26(3):633–641PubMedCrossRef
96.
go back to reference Keep M et al (2001) Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res 894(2):327–331PubMedCrossRef Keep M et al (2001) Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res 894(2):327–331PubMedCrossRef
97.
go back to reference Raoul C et al (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11(4):423–428PubMedCrossRef Raoul C et al (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11(4):423–428PubMedCrossRef
98.
99.
go back to reference Mòdol-Caballero G et al (2021) Gene therapy overexpressing neuregulin 1 type I in combination with neuregulin 1 type III promotes functional improvement in the SOD1(G93A) ALS mice. Front Neurol 12:693309PubMedCrossRefPubMedCentral Mòdol-Caballero G et al (2021) Gene therapy overexpressing neuregulin 1 type I in combination with neuregulin 1 type III promotes functional improvement in the SOD1(G93A) ALS mice. Front Neurol 12:693309PubMedCrossRefPubMedCentral
100.
go back to reference Mòdol-Caballero G et al (2021) Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis. Neurotherapeutics 18(2):1113–1126PubMedCrossRefPubMedCentral Mòdol-Caballero G et al (2021) Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis. Neurotherapeutics 18(2):1113–1126PubMedCrossRefPubMedCentral
101.
go back to reference Garbuzova-Davis S, Borlongan CV (2023) Transplanted human bone marrow endothelial progenitor cells prolong functional benefits and extend survival of ALS mice likely via blood-spinal cord barrier repair. Stem Cell Rev Rep 19(7):2284–2291 Garbuzova-Davis S, Borlongan CV (2023) Transplanted human bone marrow endothelial progenitor cells prolong functional benefits and extend survival of ALS mice likely via blood-spinal cord barrier repair. Stem Cell Rev Rep 19(7):2284–2291
102.
go back to reference Tang J et al (2023) Umbilical cord mesenchymal stem cell-conditioned medium inhibits microglial activation to ameliorate neuroinflammation in amyotrophic lateral sclerosis mice and cell models. Brain Res Bull 202:110760PubMedCrossRef Tang J et al (2023) Umbilical cord mesenchymal stem cell-conditioned medium inhibits microglial activation to ameliorate neuroinflammation in amyotrophic lateral sclerosis mice and cell models. Brain Res Bull 202:110760PubMedCrossRef
103.
go back to reference Younes R et al (2023) The secretome of human dental pulp stem cells and its components GDF15 and HB-EGF protect amyotrophic lateral sclerosis motoneurons against death. Biomedicines 11(8):2152 Younes R et al (2023) The secretome of human dental pulp stem cells and its components GDF15 and HB-EGF protect amyotrophic lateral sclerosis motoneurons against death. Biomedicines 11(8):2152
104.
go back to reference Forostyak S et al (2011) Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13(9):1036–1046PubMedCrossRef Forostyak S et al (2011) Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13(9):1036–1046PubMedCrossRef
105.
go back to reference Alcaraz MJ, Compañ A, Guillén MI (2019) Extracellular vesicles from mesenchymal stem cells as novel treatments for musculoskeletal diseases. Cells 9(1):98 Alcaraz MJ, Compañ A, Guillén MI (2019) Extracellular vesicles from mesenchymal stem cells as novel treatments for musculoskeletal diseases. Cells 9(1):98
106.
go back to reference Gschwendtberger T et al (2023) Protective effects of EVs/exosomes derived from permanently growing human MSC on primary murine ALS motor neurons. Neurosci Lett 816:137493 Gschwendtberger T et al (2023) Protective effects of EVs/exosomes derived from permanently growing human MSC on primary murine ALS motor neurons. Neurosci Lett 816:137493
107.
go back to reference Turkel I et al (2023) Mitochondrial transplantation as a possible therapeutic option for sarcopenia. J Mol Med (Berl) 101(6):645–669PubMedCrossRef Turkel I et al (2023) Mitochondrial transplantation as a possible therapeutic option for sarcopenia. J Mol Med (Berl) 101(6):645–669PubMedCrossRef
108.
go back to reference Kubat GB et al (2021) The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. J Biochem Mol Toxicol 35(1):e22612PubMedCrossRef Kubat GB et al (2021) The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. J Biochem Mol Toxicol 35(1):e22612PubMedCrossRef
109.
go back to reference Ulger O et al (2021) The effects of mitochondrial transplantation in acetaminophen-induced liver toxicity in rats. Life Sci 279:119669PubMedCrossRef Ulger O et al (2021) The effects of mitochondrial transplantation in acetaminophen-induced liver toxicity in rats. Life Sci 279:119669PubMedCrossRef
110.
go back to reference Cabral-Costa JV, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826PubMedCrossRef Cabral-Costa JV, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826PubMedCrossRef
111.
go back to reference Pourmohammadi-Bejarpasi Z et al (2020) Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 165:70–80PubMedCrossRef Pourmohammadi-Bejarpasi Z et al (2020) Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 165:70–80PubMedCrossRef
112.
go back to reference Jia X et al (2023) Mitochondrial transplantation ameliorates hippocampal damage following status epilepticus. Animal Model Exp Med 6(1):41–50 Jia X et al (2023) Mitochondrial transplantation ameliorates hippocampal damage following status epilepticus. Animal Model Exp Med 6(1):41–50
113.
go back to reference Xie Q et al (2021) Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: possible involvement of mitochondrial component separation. Oxid Med Cell Longev 2021:1006636PubMedCrossRefPubMedCentral Xie Q et al (2021) Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: possible involvement of mitochondrial component separation. Oxid Med Cell Longev 2021:1006636PubMedCrossRefPubMedCentral
114.
go back to reference Lin MW et al (2022) Mitochondrial transplantation attenuates neural damage and improves locomotor function after traumatic spinal cord injury in rats. Front Neurosci 16:800883PubMedCrossRefPubMedCentral Lin MW et al (2022) Mitochondrial transplantation attenuates neural damage and improves locomotor function after traumatic spinal cord injury in rats. Front Neurosci 16:800883PubMedCrossRefPubMedCentral
115.
go back to reference Chen T et al (2022) Mitochondrial transplantation promotes remyelination and long-term locomotion recovery following cerebral ischemia. Mediators Inflamm 2022:1346343PubMedCrossRefPubMedCentral Chen T et al (2022) Mitochondrial transplantation promotes remyelination and long-term locomotion recovery following cerebral ischemia. Mediators Inflamm 2022:1346343PubMedCrossRefPubMedCentral
116.
go back to reference Bamshad C et al (2023) Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation. Int Immunopharmacol 118:110106PubMedCrossRef Bamshad C et al (2023) Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation. Int Immunopharmacol 118:110106PubMedCrossRef
117.
go back to reference Picone P, Nuzzo D (2022) Promising treatment for multiple sclerosis: mitochondrial transplantation. Int J Mol Sci 23(4):2245 Picone P, Nuzzo D (2022) Promising treatment for multiple sclerosis: mitochondrial transplantation. Int J Mol Sci 23(4):2245
118.
go back to reference Kubat GB, Ulger O, Akin S (2021) Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol 35(11):e22898PubMedCrossRef Kubat GB, Ulger O, Akin S (2021) Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol 35(11):e22898PubMedCrossRef
120.
Metadata
Title
Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches
Authors
Gokhan Burcin Kubat
Pasquale Picone
Publication date
27-04-2024
Publisher
Springer International Publishing
Published in
Neurological Sciences
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-024-07508-6